
Symplectic toric varieties

1 Introduction

We are going to consider toric varieties from the point of view of symplectic
geometry. Please be aware that this is work in progress. Comments and sug-
gestions are welcome. For references other than Professor Thomas’ lecture, I
looked at http://www.math.ist.utl.pt/ acannas/Books/toric.pdf.

Let us first recall some basic notions. A symplectic manifold is a manifold
M together with a symplectic form ω, i.e. a closed, everywhere non-degenerate
2-form on M . The dimension of M is necessarily even.
Furthermore, let

Tn := (S1)n

be the n-torus. Clearly, Tn is a compact Lie group.

Now let M be a symplectic manifold with symplectic form ω. Suppose that
Tn acts on M smoothly and by symplectomorphisms. Suppose there exists a
moment map

µ : M → (Rn)∗,

i.e. a smooth map which is equivariant (with resprect to the coadjoint action
on (Rn)∗ ∼= Lie(Tn)∗) and such that for each v ∈ Lie(Tn) we have

ω(Xv, ·) ∼= dµv,

where µv : M → R is defined by

µv(x) := µ(x)(v).

If such a moment map exists, the action is said to be hamiltonian.

Definition 1.1. A symplectic toric manifold is a compact symplectic manifold
(M,ω) together with an effective action of Tn (i.e. Tn → Sympl(M,ω) is injec-
tive) such that dimM = 2n and the choice of a moment map µ.

This definition resembles that of toric varieties in algebraic geometry. Indeed,
C∗ is the complexification of S1.

We have seen that toric varieties can be classified in terms of fans. Something
similar is true for symplectic toric manifolds.
The fibres of the moment map are generically Tn-orbits. Furthermore, we have

Lie(Tn) ∼= Rn ∼= Λ⊗Z R
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for some free Z-module Λ of rank n. The lattice Λ is the kernel of the exponential
map. The local model about a smooth fibre of µ : M → (Rn)∗ is the projection
map

Tn × Rn → Rn ∼= Λ∗ ⊗Z R.

Let us now consider an

Example 1.2. Let S1 act by rotations on S2 with the symplectic form ω =
dh ∧ dθ. The infinitesimal action is given by ∂θ, and contracting ω with this
vector field yields dh, so the moment map is given by the height function h.

We observe that the image of h is a convex polytope with the fixed points
of the torus action being mapped to the vertices of the polytope.

We have

Theorem 1.3. (Atiyah-Guillemin-Sternberg) The image of the moment map
is a convex polytope. In fact, it is the convex hull of the images of the fixed
points of the torus action.

Definition 1.4. A Delzant polytope in Λ⊗Z R is a convex polytope such that
(i) the vertices are in Λ,
(ii) the edges are generated by elements of Λ,
(iii) generators out of edges form a Z-basis of Λ.

Clearly, the unit interval (Example 1.2) is a Delzant polytope. One can clas-
sify toric symplectic varieties in terms of Delzant polytopes. In what follows, we
will sketch a proof of the (easier) existence part, i.e. we will show that for each
Delzant polytope ∆ there is a symplectic toric variety with moment polytope
(image of the moment map) equal to ∆.
In order to prove this result, we first need the following result, due to Archimedes.

Lemma 1.5. Imagine a sphere of radius a sitting inside a cylinder of height 2a
and radius a. Then the projection from the sphere to the surface of the cylinder
is area-preserving.

Proof. Consider a plane through this figure along the middele axis of the cylin-
der. The intersection is a circle of radius a sitting inside a square with edges of
length a. Now draw a rectangular triangle with one vertex at the centre of the
circle, one vertex on the circle, such that the hypotenuse is the radius a and the
other two edges are parallel to those of the square. Call one of them h. Let φ
be the angle at the centre of the circle. Draw another rectangular triangle with
one vertex at the same point at which the other triangle meets the circle such
that the hypotenuse is tangent to the circle and the two other sides are parallel
to those of the square. Call the hypotenuse s. Then the angle at this point (in
the second triangle) is also equal to φ. Infinitesimally, we have

δs

δh
=

√
a2 − h2

a
,

which implies that

2π
√
a2 − h2δs = 2πaδh

Now, the left hand side is the area of the ring on the sphere and the right hand
side is that of the projection. The result follows by integrating.
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Now suppose we are given a Delzant polytope ∆. To coinstruct a symplectic
toric variety with moment polytope equal to ∆, we first consider the cotangent
bundle

T ∗∆ ∼= ∆× V ∗.

Being a cotangent bundle, this has a canonical symplectic structure. We have
Λ∗ ⊆ V ∗, so Λ∗ acts on V ∗. The symplectic form descends to a closed 2-form on
∆ × Tn which is, however, not necessarily non-degenerate. In order to remedy
that, we have to collapse the corresponding orbits.

Example 1.6. Consider again the manifold S2 with the symplectic form ω =
dθ ∧ dh and moment map equal to h. The corresponding moment polytope is
[−1, 1]. The product [−1, 1]× S1 is isomorphic to a cylinder. By collapsing the
two components of the boundary, we recover the sphere.

Exercise 1.7. Do the same for P2 with the torus action

(θ1, θ2) · [x : y : x] : = [x : eiθ1y : eiθ2z].

2 Symplectic toric manifolds from polytopes

We are now going to look at the proof of the existence part a bit more closely.
Suppose ∆ ⊆ Rn is a Delzant polytope. Then there is d ≥ n such that we can
write

∆ = {x ∈ Rn : 〈x, vi〉 ≤ λi for i = 1, ..., d}

for some vi ∈ Rn and λi ∈ R. One can check that the map π : Rd → Rn
defined by ei 7→ vi (ej being the standard basis) maps Zd to Zn. Consider the
symplectic manifold Cd with its canonical Td-action. The moment map is only
defined up to a constant, so we can choose it to be

ϕ : (z1, ..., zd) 7→ −
1

2
(|z1|2, ..., |zd|2) + (λ1, ..., λd).

The map Rd → Rn from above descends to a surjective map π : Td → Tn. Call
the kernel N . This is isomorphic to Td−n, and it acts in a hamiltonian way on
Cd. Let i : N → Td be the inclusion. We obtain a surjective map

i∗ : (Rd)∗ → n∗

of vector spaces, which is dual to the induced map on Lie algebras. The moment
map of N acting on Cd is

µ := i∗ ◦ ϕ : Cd → (Rd)∗ → n∗.

One can show that that the set µ−1(0) is compact and that N acts freely on it.
Hence, by symplectic reduction, the quotient

M∆ := µ−1(0)/N

is a manifold of dimension 2n, and the restriction of the symplectic form to
µ−1(0) descends to a symplectic form on M∆.
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0 (Rn)∗ (Rd)∗ (Rd−n)∗ 0

M∆ = µ−1(0)/N Cd

µ−1(0)

π∗ i∗

µ∆ ϕ µ

p

What remains to be proven is that M∆ carries a hamiltonian torus action
with the required moment polytope.

One can show that the exact sequence

0→ N → Td → Tn → 0

splits, so the action of Tn descends to M∆. Now consider the sequence of maps

µ−1(0)→ Cd → (Rd)∗ ∼= n∗ ⊕ (Rn)∗ → (Rn)∗

with the first map being the inclusion and the second the moment map. It
follows from theN -equivariance that the composition is constant alongN -orbits.
Hence we obtain a map

µ∆ : M∆ → (Rn)∗

which satisfies
κ = µ∆ ◦ p,

where p : (i∗◦ϕ)−1(0)→M∆ is the canonical projection and κ is the composition
of the above maps. In particular, µ∆ is the moment map of the action of Tn on
M∆. We find

µ∆(M∆) = κ(µ−1(0)) = ∆.

using that ϕ(µ−1(0)) = ϕ(ϕ−1((i∗)−1(0))) = π∗(∆).

3 Another way to get toric symplectic manifolds

The above construction relies on the short exact sequence of tori

0→ N = Td−n → Td → Tn → 0

which via the splitting defines an action of Tn on the symplectic quotient
µ−1(0)/N where µ is the moment map.

Even without a polytope, we can construct symplectic toric varieties in a
similar fashion by starting with a torus homomorphism as above.

Similarly to before, consider a torus (S1)m with a Hamiltonian action on
Cm. Now let r < m, let T = (S1)r be a torus of lower dimension and consider
an injective group morphism

T ↪→ (S1)m.

Since we have a canonical identification

Zm → Hom(S1, (S1)m), u 7→ λu defined by λu(t) = (tu1 , . . . , tum),
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we conclude that the above injection can be represented by an m× r matrix M
with integer entries, corresponding to the r maps S1 → (S1)m. The injection
requirement says that M has full rank r.

Via T ↪→ (S1)m y Cd, this defines a Hamiltonian action of T on Cd. The
moment map of this action decomposes as

µT : X
µ−→ s∗

MT

−−→ t∗

where s := Lie((S1)m) ∼= (Rm)∗ and t := Lie(T ) ∼= (Rr)∗ are the corresponding
Lie-algebras, µ is the moment map of the action of (S1)m, and MT denotes the
transpose of M , which represents the projection that is dual to M : Rr ↪→ Rd.

If now w ∈ t∗ is a regular value of the moment map, we can form the
symplectic quotient X = µ−1

T (w)/T of real dimension 2(m−r). This is in fact a
toric symplectic manifold: Analoguous to the construction in section 2, we have
an exact sequence of tori

0→ T → (S1)m → (S1)m−r → 0

Since the (S1)m-action on X is trivial on the image of T , we get a torus action
of (S1)m−r.

3.1 Where is the fan?

In the above setting, there is a nice construction of the corresponding fan.

Recall that we have T ↪→ (S1)m via an m× r matrix M . The moment map

of the action of T on Cm was µ : Cm → Rm MT

−−→ Rr. Let D1, . . . Dm ∈ Rr
be the column vectors of MT . Recall that inside t∗ ∼= Rr there is a lattice of
rank r corresponding to the character lattice Hom(T, S1) ∼= Zr. Since each Di

defines a map T → S1, we can canonically identify each Di with a point on the
character lattice.
Now fix w ∈ t∗, a value of the moment map. For any I ⊆ {1, . . . ,m} consider
the cone σI that is spanned in M ⊗R = Rr by the Di with i ∈ I. This is called
an anticone. We consider those anticones σI which contain w. Let

Aw = {I ⊆ {1, . . . ,m} | σI is anticone containing w}.

Then different w give different maximal anticones in t∗. Note that all this
happens in the Lie-algebra of T , while (as in section 2) we expect our fan to
appear in a lattice corresponding to the quotient of (S1)m by T . Where does
this lattice come from?
The short exact sequence of tori 0 → T → (S1)m → (S1)m−r → 0 transforms
by taking cocharacters Hom(S1,−) to a short exact sequence of lattices

0→ Zr → Zm → N → 0.

As we will see, N is the lattice we are looking for. Denote the images of the
standard basis of Zm in N by v1, . . . , vm. Now for each I ∈ Aw consider I =
{1, . . . ,m} \ I and form

Cone(vi | i ∈ I) ⊆ N ⊗ R = Rm−r.
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The collection of these cones forms a fan: For example, for J ⊆ I we have
I ⊆ J ∈ Aw whenever I ⊆ Aw. A similar statement about I1 ∩ I2 gives the
second fan condition.

This fan inside N ⊗ R is the fan associated with X. To wrap things up:

w ∈ t∗
form cones in t∗−−−−−−−−−−−→ colection of anticones

opposites in N−−−−−−−−−−→ fan

Note that starting with different values w of the moment map, we may get
different fans. This can be made more precisely: As long as w1, w2 are in the
interrior of the same maximal anticone, their symplectic quotients µ−1

T (w1,2)/T
are the same. But if we move w2 into a different anticone, the symplectic
quotients need not coincide. So we may get a different toric manifold and hence
a different fan.
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4 Toric blow-up

In this section, we will consider the blow-up of toric varieties, and in particular
how the combinatorial description (polytope or fan) changes under this opera-
tion. We will particularly consider the example of P2 with the usual action of
the torus, looking both at the symplectic and the algebro-geometric side of the
theory.
Let us first recall briefly the construction of the fan associated to a toric variety.
Suppose X is an affine toric variety over C, of dimension n. By construction, X
has an open orbit isomorphic to (C∗)n. Further, the Z-module Hom(C∗, (C∗)n)
of homomorphisms of algebraic groups is free of rank n. We say that an element
ψ ∈ Hom(C∗, (C∗)n) converges in X if there is a map ψ̄ : C→ X ⊇ (C∗)n such
that

ψ̄ |C∗= ψ.

Define the polyhedral cone associated to X to be the cone

σ ⊆ Hom(C∗, (C∗)n)⊗Z Q

generated by the convergent morphisms. If X is not necessarily affine, we can
cover X with finitely many open affine toric subvarieties, and we can patch the
polyhedral cones together to obtain a fan . As it turns out, this combinatorial
object determines the toric variety up to isomorphism.

Exercise 4.1. Find the polyhedral cone associated to Cn and Pn with the usual
torus actions.

Now let us consider the variety

Bl0 C2 := {((x, y), [a : b]) ∈ C2 ×C P1 : ax− by = 0}

with the torus action

(t1, t2) · ((x, y), [a : b]) := ((t1x, t2y), [t1a : t2b]).

This variety can be covered by open affine toric subvarieties given by a 6= 0 and
b 6= 0. We know that any homomorphism of algebraic groups

C∗ → (C∗)2

is given by
t 7→ (tk1 , tk2)

with kj ∈ Z for j = 1, 2. Therefore, in order for such a morphism to converge,
we must have ki ≥ 0 for i = 1, 2. Furthermore, we have

[tk1 : tk2 ] = [1 : tk2−k1 ],

so (as ”[1 : ∞] = [0 : 1]”), we also obtain the condition that k2 ≥ k1. Putting
things together, we find that the fan associated to Bl0 C2 consists of the cones
generated by (1, 0), (1, 1) and (1, 1), (0, 1).
Using a very similar argument, we can show that the fan associated to Bl[0:1:1] P2

consists of the cones generated by (1, 0), (1, 1), (1, 1), (0, 1), (0, 1), (−1,−1) and
(−1,−1), (1, 0), so it arises from the fan of P2 by adding an extra ray. This corre-
sponds to the fact that the polytope of a blow-up (in a fixed point) corresponds
to chopping off the vertex coming from this fixed point.
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