
Symplectic reduction

1 Basic Symplectic Geometry

Definition 1.1. Let M be a smooth manifold. A 2-form ω ∈ Ω2(M) is called
a symplectic form if dω = 0 and ω is nondegenerate. In this case, we call the
pair (M,ω) a symplectic manifold.

One can think of the closed condition as follows. By Stokes’ Theorem, for
any 3-dimensional submanifold with boundary V ⊆M , we have∫

∂V

ω =

∫
V

dω = 0.

In particular, if Σ1 and Σ2 are surfaces inside M such that Σ1 ∪ Σ2 = ∂V for
some V , then (provided we orient things correctly),∫

Σ1

ω =

∫
Σ2

ω.

What about non-degeneracy? Since ω is a 2-form, for each p ∈ M , we get
an alternating map

ω : TpM × TpM → R.

This defines a map

TpM → T ∗pM

v 7→ ιvω,

where ιvω is defined by

〈ιvω,w〉 = ω(v, w) for all w ∈ TpM.

We say that ω is nondegenerate if the map TpM → T ∗pM is an isomorphism for
all p ∈M .

Exercise 1.2. Let V be a vector space with dimRV = 2n. Show that ω ∈ Λ2V ∗

satisfies ωn 6= 0 if and only if the induced map V → V ∗ as described above is
an isomorphism.

Suppose we also have an inner product 〈 , 〉, and so an isomorphism V → V ∗.

Show that, if the composition J : V
ω−→ V ∗

〈,〉−→ V is orthogonal with respect
to 〈 , 〉, then J2 = −1, so J defines a complex structure on V .

Conversely, suppose we have a complex structure J and inner product 〈 , 〉
on V , which is compatible with J in the sense that 〈Jv, Jw〉 = 〈v, w〉. Prove
that ω(u, v) := 〈u, Jv〉 is a skew non-degenerate 2-form.

Example 1.3. The following are examples of symplectic manifolds.
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1. (Almost) Kähler manifolds. If X is an almost Hermitian manifold with
Hermitian form ω, then ω is a nondegenerate 2-form by Exercise 1.2. So
ω is a symplectic form if and only if dω = 0, i.e., if and only if X is an
almost Kähler manifold.

2. Cotangent bundles. Consider π : T ∗N → N . This has a canonical 1-form
on it, defined by θ(n,ξ) = π∗ξ for n ∈ N and ξ ∈ T ∗nN . Then (claim) the
2-form ω = dθ is actually a symplectic 2-form. So (T ∗N,ω) is naturally a
symplectic manifold (and is a good model for the phase space of classical
physics—think about the case N = Rn)

Exercise 1.4. Take local coordinates xi on U ∼= Rn ⊂ N . Let yi be coordinates
on the fibres of T ∗U ∼= Rn × (Rn)∗ ⊂ T ∗N .

Check that in these coordinates θ = Σni=1yidxi and ω := dθ = Σni=1dyi ∧ dxi
and that this is indeed non-degenerate.

The construction of the isomorphism TpM → T ∗pM above globalises to give
an isomorphism between vector fields and 1-forms: given a vector field v on a
symplectic manifold (M,ω), we get a 1-form ιvω satisfying

〈ιvω,w〉 = ω(v, w)

for all vector fields w on M .

Definition 1.5. We say that a vector field v on (M,ω) is symplectic if the
1-form ιvω is closed, i.e., dιvω = 0. We say that v is Hamiltonian if ιvω is
exact, i.e., ιvω = −dH for some smooth function H on M . In this case, we
call the function H a Hamiltonian for the vector field v. We write symp(M,ω)
and ham(M,ω) respectively for the spaces of symplectic and Hamiltonian vector
fields on M .

Remark 1.6. Note that the Hamiltonian H is only defined up to constant trans-
lation. Indeed C∞(M,R) → ham(M,ω) given by H 7→ vH (where vH is the
unique vector field satisfying ιvHω = −dH) has kernel precisely the constants
R.

Example 1.7. Consider M = R2 with coordinates (p, q), and the symplectic
form ω = dp ∧ dq. Consider the Hamiltonian H = 1

2 (p2 + q2). We have

dH = pdp+ qdq

For any vector field v

if v = a
∂

∂p
+ b

∂

∂q
then ιvω = adq − bdp.

So taking b = p and a = −q, we get

−dH = ιvω for v = −q ∂
∂p

+ p
∂

∂q
.

So v above is a Hamiltonian vector field.

Remark 1.8. On R2, every symplectic vector field is Hamiltonian, since every
closed 1-form is exact.
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Example 1.9. Consider the the torus M = R2/Z2. If (θ1, θ2) are coordinates
on R2, then the symplectic form dθ1 ∧ dθ2 descends to a symplectic form ω on
M . The vector field v = ∂

∂θ2
has ιvω = −dθ1, which is closed but not exact (as

θ1 is not a function on M). Hence v is symplectic but not Hamiltonian.

Remark 1.10. Let (X,ω) be a symplectic manifold and assume that φt : X → X
is a smoothly varying family of diffeomorphisms. Then we have

d

dt
φ∗tω = dιvtω + ιvtdω,

where vt = dφt
dt is the vector field defined by φt and ιvtdω is the 2-form given

by (ιvtdω)(u,w) = (dω)(vt, u, w). (The left hand side of this equation is called
the Lie derivative of ω in the direction vt.) In particular, since ω is symplectic,
d
dtφ
∗
tω = dιvtω is 0 if and only if vt is a symplectic vector field. In particular,

specialising to the case where vt = v is constant in t, we see that v is a symplectic
vector field if and only if flowing along v preserves the symplectic form ω.

Example 1.11. Consider M = R2 with coordinates (p, q) and symplectic form
dp ∧ dq. Consider the Hamiltonian

H =
p2

2m
+ V (q),

where V is some smooth real-valued function. The associated Hamiltonian
vector field is

vH = −V ′(q) ∂
∂p

+
p

m

∂

∂q
.

The equations for flow along vH are therefore

ṗ = −V ′(q)

q̇ =
p

m
.

Interpreting q as position, p as momentum, m as mass and V as potential
enegery, these are precisely the equations of motion in classical mechanics.

Remark 1.12. The vector field XH = −vH is called the “symplectic gradient of
H”. It is the vector field dual to dH under ω : TM → T ∗M and, once we have
picked a compatible almost complex structure and metric, is precisely −J∇H.
Since this is orthogonal to ∇H, flowing under XH preserves H. Formally this
follows from XH(H) = dH(XH) = ω(XH , XH) = 0.

Exercise 1.13. Let S1 act on Cn diagonally in the usual way. Show, by differen-
tiating, that the infinitesimal vector field defined by Xξ(z) = d

dt |t=0(exp(tξ).z),
is Xξ(z1, . . . , zn) = iξ(z1, . . . , zn) for ξ ∈ Lie(S1) ∼= R. Putting ξ = 1, show
that this is really Σni=1ri

∂
∂θi

where zj = rje
iθj . Furthermore, verify that this is

a Hamiltonian vector field with Hamiltonian −1
2 Σni=1r

2
i + c for any constant c.

Exercise 1.14. Let X be a symplectic vector field on (M,ω) and γ a path in
M . Denote by Tε the surface swept out after time ε by the flow along the vector

field X starting at γ. Then define Fluxγ(X) := limε→0

∫
Tε
ω

ε . Prove that X is
Hamiltonian ⇔ Fluxγ(X) = 0 for every γ ∈ H1(M).
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2 Hamiltonian group actions and moment maps

Definition 2.1. If (X,ω) is a symplectic manifold, the group of symplectomor-
phisms of X is the infinite-dimensional Lie group

Symp(X,ω) = {φ : X → X | φ∗ω = ω}.

By Remark 1.10, the Lie algebra of Symp(X,ω) is

Lie(Symp(X,ω)) = symp(X,ω),

the space of symplectic vector fields on X. (This sits inside the space of all
smooth vector fields, which is the Lie algebra of the group of diffeomorphisms
of X.)

Exercise 2.2. If F and G are smooth functions on X, define the Poisson bracket
of F and G by

{F,G} = ω(vF , vG).

Show that { , } is a Lie bracket on C∞(X,R), and that the map

C∞(X,R)→ symp(X)

F 7→ vF

is a Lie algebra homomorphism with respect to the usual Lie bracket of vector
fields. Deduce that the space of Hamiltonian vector fields ham(X) ⊆ symp(X)
is a Lie subalgebra.

Definition 2.3. We denote by Ham(X,ω) the unique (connected) subgroup of
Symp(X,ω) with

Lie(Ham(X,ω)) = ham(X,ω).

Definition 2.4. LetG be a connected Lie group acting on a symplectic manifold
(X,ω). We say that the action is Hamiltonian if the action of G factors through

G→ Ham(X,ω)→ Diff(X).

Equivalently, the action is Hamiltonian if for every ξ ∈ Lie(G), associated vector
field vξ given by

(vξ)x =
d

dt
exp(tξ) · x|t=0

is Hamiltonian.

Example 2.5. Let G = Tn = U(1)n be a torus. Then Lie(G) = Rn with
Lie bracket [ , ] = 0. If we have a Hamiltonian action of G on (X,ω), then if
ξ1, . . . , ξn is a basis for Lie(G), we get a collection H1, . . . ,Hn of Hamiltonians
on X. Since [ξi, ξj ] = 0, passing to the corresponding vector fields vHi , we have

v{Hi,Hj} = [vHi , vHj ] = 0

and hence {Hi, Hj} is constant for all i, j. With a little more work, we can
actually show that

{Hi, Hj} = 0 for all i, j.
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As a slight aside, note that since the vHi span the tangent space to each
orbit, this implies that ω = 0 when restricted to a Tn-orbit. Submanifolds
of this type appear sufficiently often in symplectic topology that they have a
special name.

Definition 2.6. A submanifold L ⊆ X is called isotropic if ω|L = 0, and
Lagrangian if in addition dimL = 1

2 dimX.

Remark 2.7. Lagrangian submanifolds appear in quantum mechanics as the
smallest submanifolds on which a which a wavefunction can be localised. (cf.
Heisenberg uncertainty principle)

Example 2.8. Consider Tn acting on Cn via

(eiθ1 , eiθ2 , . . . , eiθn) · (z1, z2, . . . , zn) = (eiθ1z1, e
iθ2z2, . . . , e

iθnzn).

The corresponding Hamiltonians are Hi = 1
2 |zi|

2 generating the θi rotation.

Example 2.9. Consider S2 ⊆ R3 with symplectic form given by the area form.
(If we identify S2 with CP1, then this is also the natural symplectic structure
coming from the Fubini-Study form.) Then the U(1) action on S2 given by
rotation about the z-axis is Hamiltonian, and the Hamiltonian H is just the
height function (projection to z-coordinate).

Definition 2.10. Let X be a symplectic manifold with a Hamiltonian action
of Tn and associated Hamiltonians H1, . . . ,Hn. The moment map of the action
is µ : X → Rn given by

µ(x) = (H1(x), . . . ,Hn(x)).

Remark 2.11. The moment map for a torus action is well-defined up to trans-
lation in Rn.

Example 2.12. For Tn acting on Cn as in Example 2.8, we have

µ(z1, . . . , zn) = (
1

2
|z1|2, . . . ,

1

2
|zn|2).

The moment image is

µ(Cn) = {(x1, . . . , xn)|xi ≥ 0}.

For example, for n = 2, the moment image is the quadrant in R2 below.

For every point c = ( 1
2r

2
1,

1
2r

2
2) on the interior, we have

µ−1(c) = {(eiθ1r1, e
iθ2r2) ∈ C2}

is a free T 2-orbit.
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In general, we have the following cool fact.

Theorem 2.13. If µ : X → Rn is the moment map for a Hamiltonian torus
action, then µ(X) ⊆ Rn is a convex polytope.

We can define moment maps for more general group actions as follows.

Definition 2.14. Let G be a connected compact Lie group with Lie algebra g
and a Hamiltonian action on a symplectic manifold (X,ω). A map µ : X → g∗

is called an equivariant moment map if

• µ(gx) = Ad(g)∗µ(x) for all g ∈ G and x ∈ X, and

• ιvξω = −d〈µ, ξ〉 for ξ ∈ g.

Here Ad(g)∗ : g∗ → g∗ is (the inverse of) the dual to the adjoint action
Ad(g) : g → g, which is the map induced on the tangent space at the identity
of G by

G −→ G

h 7−→ ghg−1.

Exercise 2.15. In the setup of Definition 2.14, assume that µ : X → g∗ satisfies

ιvξω = −d〈µ, ξ〉.

Show that the following are equivalent.

(a) µ(gx) = Ad(g)∗µ(x) for all g ∈ G and x ∈ X.

(b) The map

µ̃ : g→ C∞(X,R) given by µ̃(ξ)(x) = 〈µ(x), ξ〉

is a homomorphism of (left) G-modules, where G acts on g via the adjoint
action, and on C∞(X,R) by (gf)(x) = f(g−1x).

(c) The map µ̃ : g→ C∞(X,R) is a homomorphism of g-modules.

(d) The map µ̃ : g→ C∞(X,R) is a homomorphism of Lie algebras.

Lemma 2.16. Let G be a compact Lie group with a Hamiltonian action on a
symplectic manifold X. Then there exists an equivariant moment map µ : X →
g∗.

Proof. We have a commutative diagram of G-modules

0 R C∞(X,R) ham(X) 0

0 R V g 0

µ̃

with exact rows, where

V = {(F, ξ) ∈ C∞(X,R)⊕ g | vF = vξ}.

Since the bottom row is an exact sequence of finite-dimensional G-modules with
G compact, it has a G-equivariant splitting. In particular, we can construct a
map of G-modules µ̃ : g → C∞(X,R) covering g → ham(X) as shown, which
induces an equivariant moment map µ : X → g∗.
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3 Symplectic reduction

The aim of symplectic reduction is to find a way of taking quotients of symplectic
manifolds under group actions. For example, suppose we have a free action of
S1 on a symplectic manifold X. Näıvely, we might hope to find a symplectic
structure on the topological quotient X/S1. However, this cannot possibly work,
since

dim
(
X/S1

)
= dimX − 1

is odd, and symplectic manifolds always have even dimension.
Instead, we use the following trick: if the action of S1 is Hamiltonian, then

we can cut down the dimension by 1 by restricting the action to a level set of
the moment map. Taking the quotient of this new manifold, we at least get
something even-dimensional. The following proposition ensures that we get a
natural symplectic structure.

Proposition 3.1. Let (X,ω) be a symplectic manifold with a Hamiltonian ac-
tion of a compact Lie group G and associated equivariant moment map µ :
X → g∗ = Lie(G)∗. If 0 ∈ g∗ is a regular value of µ such that G acts freely
on M = µ−1(0), then M/G is a symplectic manifold with symplectic structure
induced by ω.

Definition 3.2. The symplectic manifold M/G of Proposition 3.1 is called the
symplectic reduction of X, and is denoted by X//0G if the choice moment map
is understood.

Remark 3.3. If µ : X → g∗ is any equivariant moment map and c ∈ g∗ is
invariant under the coadjoint action of G, then µ′(x) = µ(x)− c defines another
moment map. (In particular if G is abelian, then we can do this for any c ∈ g∗.)
If c is a regular value for µ such that the G-action on µ−1(c) is free, then we
can form another symplectic reduction

(µ′)−1(0)/G = µ−1(c)/G.

In general, different values of c will give different symplectic reductions. We
often write

X//cG = µ−1(c)/G,

where the choice of moment map is implicit.

Sketch of proof of Proposition 3.1. Write B = M/G. Since the G-action on M
is free, B is a manifold with tangent space

TpB = Tp̃M/g

= Tp̃M/(RvH1
⊕ · · · ⊕ RvHn),

where p̃ ∈M is any preimage of p ∈ B, and H1, . . . ,Hn are the components for
the moment map on X corresponding to some basis for g∗. Define the symplectic
form ωB ∈ Ω2(B) by

(ωB)p(v, w) = ωp̃(ṽ, w̃),

where p̃ ∈ M is a preimage of p ∈ B, and ṽ, w̃ ∈ Tp̃M are preimages of v, w ∈
TpB. The form ωB is well-defined since ω is invariant under G and the Hi are
constant restricted to M (so that ω(vHi , w̃) = 0 for all w ∈ TpM). One can
check that ωB is indeed a symplectic form.
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Example 3.4 (CPn). Consider S1 acting on Cn+1 diagonally by

eiθ(z0, . . . , zn) = (eiθz0, . . . , e
iθzn).

The moment map (which is just a Hamiltonian in this case) is

µ(z0, . . . , zn) =
1

2
|z0|2 + · · ·+ 1

2
|zn|2.

So for every r > 0, we get a symplectic structure on

µ−1(r2/2)/S1 = S2n+1/S1 = CPn.

The associated symplectic form is the unique form ωFS such that

π∗ωFS = ωCn+1 |S2n+1 ,

where π : S2n+1 → CPn is the quotient map.

Exercise 3.5. Show that for an appropriate choice of r, ωFS agrees with the
explicit expression for the Fubini-Study form in the lecture on Kähler geometry.

Example 3.6. The S1-action of Example 3.4 factors through the Tn+1-action

(eiθ0 , . . . , eiθn)(z0, . . . , zn) = (eiθ0z0, . . . , e
iθnzn),

via the diagonal map

S1 −→ Tn+1

eiθ 7−→ (eiθ, · · · , eiθ).

So we get a residual action of T = Tn+1/S1 on the symplectic reduction CPn =
Cn+1//r2/2S

1 with moment map

µ′ : CPn = H−1(r2/2)/S1 −→ Rn+1,

induced by the moment map

µ : Cn+1 −→ Rn+1

(z0, . . . , zn) 7−→
(

1

2
|z0|2, . . . ,

1

2
|zn|2

)
for the Tn+1-action. Note that the image of µ′ is contained in

{(x0, . . . , xn) ∈ Rn+1 | x0 + · · ·+ xn = r2/2},

which, up to translation, is the same as

Lie(T )∗ ⊆ Lie(Tn+1)∗ = Rm+1.

So µ′ does make sense as a moment map. For example, the moment image of
CP1 is the interval shown below.
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The moment image of CP2 is the triangle below.

In general, the moment image of CPn is the n-simplex

{(x0, x1, . . . , xn) ∈ Rn+1 | xi ≥ 0, x0 + x1 + · · ·+ xn = 1}.
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