(Co)homology and Poincare Duality (Enriching)

Kwok Wing Tsoi

1 Simplicial Homology

Definition 1.1. A standard n-simplex is given by

$$
\Delta^{n}=\left\{\left(t_{0}, t_{1}, \ldots, t_{n}\right) \in \mathbb{R}^{n+1}: \sum_{i} t_{i}=1 \text { and } t_{i} \geq 0 \text { for all } i\right\}
$$

For each $0 \leq j \leq n$, we define the j-th opposite face is give by

$$
\left\{\left(t_{0}, t_{1}, \ldots, t_{n}\right) \in \Delta^{n}: t_{j}=0\right\}
$$

and the inclusion map $\partial_{j}: \Delta^{n-1} \hookrightarrow \Delta^{n}$ given by

$$
\left(t_{0}, t_{1}, \ldots, t_{n-1}\right) \mapsto\left(t_{0}, t_{1}, \ldots, t_{j-1}, 0, t_{j}, \ldots, t_{n-1}\right)
$$

Definition 1.2. A topological space X is a Δ-complex if

- there is a collection of maps $\left\{\sigma_{\alpha}: \Delta^{n} \rightarrow X\right\}$ (here, n depends of α) which is injective under restriction to $\left(\Delta^{n}\right)^{o}$, the interior of Δ^{n}.
- for all $x \in X$, there exists a unique $\left.\sigma_{\alpha}\right|_{\left(\Delta^{n}\right)^{o}}$ such that its image contains x.
- a subset U in X is open if and only if $\sigma_{\alpha}^{-1}(U)$ is open in Δ^{n} for all $\alpha \in A$.
- For all $\alpha \in A$ and $0 \leq j \leq n$, we have $\sigma_{\alpha} \circ \partial_{j}=\sigma_{\beta}$ for some β.

We shall abuse the notation a bit and call a map $\sigma_{\alpha}: \Delta^{n} \rightarrow X$ a n-simplex.
Roughly speaking, the n-th simplicial homology group describes the n dimensional holes of a topological space. Let X be a Δ-complex. Define the d-chain of X as a free abelian group generated by the d-simplex of X. In other words, we have

$$
C_{d}=\bigoplus_{\text {d-simplex }} \mathbb{Z} \sigma
$$

An element of C_{d} can be written as a finite sum $\sum_{\alpha \in A} a_{\alpha} \sigma_{\alpha}$ where $\sigma_{\alpha}: \Delta^{d} \rightarrow X$ and $a_{\alpha} \in \mathbb{Z}$.

Definition 1.3. The d-th boundary map $\partial: C_{d} \rightarrow C_{d-1}$ is given by

$$
\partial\left(\sum_{\alpha \in A} a_{\alpha} \sigma_{\alpha}\right)=\sum_{\alpha \in A} \sum_{j}(-1)^{j} a_{\alpha}\left(\sigma_{\alpha} \partial_{j}\right) .
$$

Example 1.4. Consider the 2-simplex $\left[v_{0}, v_{1}, v_{2}\right]$
Theorem 1.5. Let X be a chain complex. For all $d \geq 2$, we have $\partial^{2}: C_{d} \rightarrow C_{d-2}$.
Proof. See Exercise 2.
Now we can form a chain complex, namely

$$
\ldots \rightarrow C_{d} \xrightarrow{\partial} C_{d-1} \xrightarrow{\partial} C_{d-2} \rightarrow \ldots
$$

Since $\partial^{2}=0$, we have that $\operatorname{ker}\left(\partial: C_{d} \rightarrow C_{d-1}\right) \supseteq \operatorname{im}\left(\partial: C_{d+1} \rightarrow C_{d}\right)$. The d-th homology group measures the exactness of this inclusion.

Definition 1.6. Let X be a Δ-complex. The d-th homology group of X is given by

$$
H_{d}(X)=\frac{\operatorname{ker}\left(\partial: C_{d} \rightarrow C_{d-1}\right)}{\operatorname{im}\left(\partial: C_{d+1} \rightarrow C_{d}\right)} .
$$

Example 1.7. Consider that torus T^{2}.

We have $\partial A=\partial B=c-a+b$ and $\partial a=\partial b=\partial c=0$. Therefore, the chain complex is given by

$$
\mathbb{Z}_{A} \oplus \mathbb{Z}_{B} \xrightarrow{\partial_{2}} \mathbb{Z}_{a} \oplus \mathbb{Z}_{b} \oplus \mathbb{Z}_{c} \xrightarrow{\partial_{1}} \mathbb{Z}_{\text {point }}
$$

where ∂_{2} is given by the linear map $\left(\begin{array}{cc}-1 & -1 \\ 1 & 1 \\ 1 & 1\end{array}\right)$ and ∂_{1} is the zero map. Therefore, we can compute its homology groups as

$$
\begin{aligned}
& H_{2}\left(T^{2}\right) \cong \mathbb{Z}_{(A-B)}, \\
& H_{1}\left(T^{2}\right) \cong \mathbb{Z}_{a} \oplus \mathbb{Z}_{b}, \\
& H_{0}\left(T^{2}\right) \cong \mathbb{Z}_{\text {point }} .
\end{aligned}
$$

It is worth mentioning that in the above example $H_{1}\left(T^{2}\right) \cong \pi_{1}\left(T^{2}\right)$, the fundamental group. However, this is far from true in general. See Exercise ??. Nevertheless, it is true that H_{1} is always isomorphic to the abelianisation of the fundamental group π_{1}. In other words, we have $H_{1}=\frac{\pi_{1}}{\left[\pi_{1}, \pi_{1}\right]}$ where $[\cdot, \cdot]$ is the commutator.

2 Singular Homology

We are introducing the singular homology in this section, which is more ambitious than the simplicial homology: besides the injective simplexes, we also take all the continuous maps into consideration. In other words, for any topological space, we define

$$
C_{d}(X):=\bigoplus_{f: \Delta^{d} \rightarrow X} \mathbb{Z}_{f}
$$

where the sum is over all continuous maps f. To achieve a chain, we shall define a boundary map $\partial: C_{d}(X) \rightarrow C_{d-1}(X)$ by

$$
\partial f:=\sum_{j}(-1)^{j}\left(f \circ \partial_{j}\right)
$$

and extend the map by linearity. One can show that $\partial^{2}=0$ (See Exercise ??).
Despite being ambitious, the singular and simplicial homology agree for "reasonably" good spaces X.

1. They agree for a cell Δ^{n}.
2. They both satisfy the Mayer-Vietoris.

3 Dual Triangulation and Poincare Duality

Let X^{n} be a compact manifold, Consider a simplicial complex which is triangulated by 2 simplexes. We connect the centroid of each triangle with a green line and obtain the dual triangulation (Tragically, it is not entirely consisted of triangles).

One can show that each k-simplex, it induces a $(n-k)$-cell in the dual triangulation. In particular, this gives rise to a map of chain complexes

The map $\delta: \operatorname{Hom}\left(\widetilde{C_{n-d+1}}(X), \mathbb{Z}\right) \rightarrow \operatorname{Hom}\left(\widetilde{C_{n-d}}(X), \mathbb{Z}\right)$ is simply given by $f \mapsto f \circ \partial$, where $\widetilde{C_{\star}}$ denotes the cell in the dual chain complex. One can show that $\delta^{2}=0$. In particular, $\operatorname{ker}\left(\delta: \operatorname{Hom}\left(\widetilde{C_{d}}(X), \mathbb{Z}\right) \rightarrow \operatorname{Hom}\left(\widetilde{C_{d-1}}(X), \mathbb{Z}\right)\right) \supseteq \operatorname{im}\left(\delta: \operatorname{Hom}\left(\widetilde{C_{d-1}}(X), \mathbb{Z}\right) \rightarrow \operatorname{Hom}\left(\widetilde{C_{d-2}}(X), \mathbb{Z}\right)\right)$. Therefore, analogously we can define the cohomology groups.

Definition 3.1. Let X be a simplicial complex. The d-th cohomology group is given by

$$
H^{d}(X):=\frac{\operatorname{ker}\left(\delta: \operatorname{Hom}\left(\widetilde{C_{d}}(X), \mathbb{Z}\right) \rightarrow \operatorname{Hom}\left(\widetilde{\bar{C}_{d-1}}(X), \mathbb{Z}\right)\right)}{\operatorname{im}\left(\delta: \operatorname{Hom}\left(\widetilde{C_{d-1}}(X), \mathbb{Z}\right) \rightarrow \operatorname{Hom}\left(\widetilde{C_{d-2}}(X), \mathbb{Z}\right)\right)}
$$

We should remark that if the coefficients are chosen over a field, then the cohomology group H^{d} is indeed the dual of the homology group H_{d}. See Exercise ??. However, this is not true if the coefficients are not chosen over a field. A simple example is to consider the multiplication-by-2 map $m: \mathbb{Z} \rightarrow \mathbb{Z}, x \mapsto 2 x$. Dualizing the map gives the same map $m^{*}: \mathbb{Z} \rightarrow \mathbb{Z}, x \mapsto 2 x$.

Therefore, the kernel is 0 whereas the cokernel is $\mathbb{Z} / 2 \mathbb{Z}$.
Now we can formulate the Poincare Duality, which gives a magical relation between homology and cohomology groups over a specific class of manifolds.

Theorem 3.2 (Poincare Duality). If X^{n} is a manifold which is compact, closed and orientable, then we have

$$
H_{k}(X) \cong H^{n-k}(X)
$$

for any $0 \leq k \leq n$.
Roughly speaking (at least true over a field), the group $H_{k}(X)$ is dual to the group $H_{n-k}(X)$. The induced pairing from the Poincare Duality is called the intersection pairing.

4 Exercise

Exercise 1. What is the minimum number of 2-simplex on a torus T^{2} ?
Exercise 2. Let ∂ be the boundary map with respect to the simplicial homology. For all $d \geq 2$, show that $\partial^{2}: C_{d} \rightarrow C_{d-2}$.

Exercise 3. Calculate the homology groups of the circles.

Exercise 4. Let ∂ be the boundary map with respect to the singular homology. For all $d \geq 2$, show that $\partial^{2}: C_{d}(X) \rightarrow C_{d-2}(X)$.

Exercise 5. Let X be the following Δ-complex.

Show that $H_{1}(X)=\mathbb{Z} \oplus \mathbb{Z}$ and $\pi_{1}=\langle a, b\rangle$, a free group generated by two elements.
Exercise 6. Show that $\pi_{2}\left(T^{2}\right)=0$.

Exercise 7.

