(Co)homology and Poincare Duality (Enriching)

Kwok Wing Tsoi

1 Simplicial Homology

Definition 1.1. A standard n-simplex is given by

$$\Delta^{n} = \{(t_{0}, t_{1}, ..., t_{n}) \in \mathbb{R}^{n+1} : \sum_{i} t_{i} = 1 \text{ and } t_{i} \ge 0 \text{ for all } i\}.$$

For each $0 \le j \le n$, we define the *j*-th opposite face is give by

$$\{(t_0, t_1, ..., t_n) \in \Delta^n : t_j = 0\}.$$

and the inclusion map $\partial_i : \Delta^{n-1} \hookrightarrow \Delta^n$ given by

$$(t_0, t_1, ..., t_{n-1}) \mapsto (t_0, t_1, ..., t_{j-1}, 0, t_j, ..., t_{n-1}).$$

Definition 1.2. A topological space X is a Δ -complex if

- there is a collection of maps $\{\sigma_{\alpha} : \Delta^n \to X\}$ (here, n depends of α) which is injective under restriction to $(\Delta^n)^o$, the interior of Δ^n .
- for all $x \in X$, there exists a unique $\sigma_{\alpha}|_{(\Delta^n)^o}$ such that its image contains x.
- a subset U in X is open if and only if $\sigma_a^{-1}(U)$ is open in Δ^n for all $\alpha \in A$.
- For all $\alpha \in A$ and $0 \le j \le n$, we have $\sigma_{\alpha} \circ \partial_j = \sigma_{\beta}$ for some β .

We shall abuse the notation a bit and call a map $\sigma_{\alpha} : \Delta^n \to X$ a n-simplex.

Roughly speaking, the *n*-th simplicial homology group describes the *n* dimensional holes of a topological space. Let *X* be a Δ -complex. Define the *d*-chain of *X* as a free abelian group generated by the *d*-simplex of *X*. In other words, we have

$$C_d = \bigoplus_{\text{d-simplex}} \mathbb{Z}\sigma.$$

An element of C_d can be written as a finite sum $\sum_{\alpha \in A} a_\alpha \sigma_\alpha$ where $\sigma_\alpha : \Delta^d \to X$ and $a_\alpha \in \mathbb{Z}$.

Definition 1.3. The d-th boundary map $\partial : C_d \to C_{d-1}$ is given by

$$\partial (\sum_{\alpha \in A} a_{\alpha} \sigma_{\alpha}) = \sum_{\alpha \in A} \sum_{j} (-1)^{j} a_{\alpha} (\sigma_{\alpha} \partial_{j})$$

Example 1.4. Consider the 2-simplex $[v_0, v_1, v_2]$

Theorem 1.5. Let X be a chain complex. For all $d \ge 2$, we have $\partial^2 : C_d \to C_{d-2}$.

Proof. See Exercise 2.

Now we can form a chain complex, namely

$$\dots \to C_d \xrightarrow{\partial} C_{d-1} \xrightarrow{\partial} C_{d-2} \to \dots$$

Since $\partial^2 = 0$, we have that ker $(\partial : C_d \to C_{d-1}) \supseteq \operatorname{im}(\partial : C_{d+1} \to C_d)$. The *d*-th homology group measures the exactness of this inclusion.

Definition 1.6. Let X be a Δ -complex. The d-th homology group of X is given by

$$H_d(X) = \frac{\ker(\partial : C_d \to C_{d-1})}{\operatorname{im}(\partial : C_{d+1} \to C_d)}.$$

Example 1.7. Consider that torus T^2 .

We have $\partial A = \partial B = c - a + b$ and $\partial a = \partial b = \partial c = 0$. Therefore, the chain complex is given by

$$\mathbb{Z}_A \oplus \mathbb{Z}_B \xrightarrow{\partial_2} \mathbb{Z}_a \oplus \mathbb{Z}_b \oplus \mathbb{Z}_c \xrightarrow{\partial_1} \mathbb{Z}_{point}$$

where ∂_2 is given by the linear map $\begin{pmatrix} -1 & -1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}$ and ∂_1 is the zero map. Therefore, we can compute

its homology groups as

$$H_2(T^2) \cong \mathbb{Z}_{(A-B)},$$

$$H_1(T^2) \cong \mathbb{Z}_a \oplus \mathbb{Z}_b,$$

$$H_0(T^2) \cong \mathbb{Z}_{point}.$$

It is worth mentioning that in the above example $H_1(T^2) \cong \pi_1(T^2)$, the fundamental group. However, this is far from true in general. See Exercise ??. Nevertheless, it is true that H_1 is always isomorphic to the abelianisation of the fundamental group π_1 . In other words, we have $H_1 = \frac{\pi_1}{[\pi_1, \pi_1]}$ where $[\cdot, \cdot]$ is the commutator.

Singular Homology 2

We are introducing the singular homology in this section, which is more ambitious than the simplicial homology: besides the injective simplexes, we also take all the continuous maps into consideration. In other words, for any topological space, we define

$$C_d(X) := \bigoplus_{f:\Delta^d \to X} \mathbb{Z}_f$$

where the sum is over all continuous maps f. To achieve a chain, we shall define a boundary map $\partial : C_d(X) \to C_{d-1}(X)$ by

$$\partial f := \sum_{j} (-1)^{j} (f \circ \partial_{j})$$

and extend the map by linearity. One can show that $\partial^2 = 0$ (See Exercise ??).

Despite being ambitious, the singular and simplicial homology agree for "reasonably" good spaces X.

- 1. They agree for a cell Δ^n .
- 2. They both satisfy the Mayer-Vietoris.

Dual Triangulation and Poincare Duality 3

Let X^n be a compact manifold, Consider a simplicial complex which is triangulated by 2simplexes. We connect the centroid of each triangle with a green line and obtain the dual triangulation (Tragically, it is not entirely consisted of triangles).

One can show that each *k*-simplex, it induces a (n-k)-cell in the dual triangulation. In particular, this gives rise to a map of chain complexes

The map δ : Hom $(\widetilde{C_{n-d+1}}(X), \mathbb{Z}) \to$ Hom $(\widetilde{C_{n-d}}(X), \mathbb{Z})$ is simply given by $f \mapsto f \circ \partial$, where $\widetilde{C_{\star}}$ denotes the cell in the dual chain complex. One can show that $\delta^2 = 0$. In particular, $\ker(\delta : \operatorname{Hom}(\widetilde{C_d}(X), \mathbb{Z}) \to \operatorname{Hom}(\widetilde{C_{d-1}}(X), \mathbb{Z})) \supseteq \operatorname{im}(\delta : \operatorname{Hom}(\widetilde{C_{d-1}}(X), \mathbb{Z}) \to \operatorname{Hom}(\widetilde{C_{d-2}}(X), \mathbb{Z}))$. Therefore, analogously we can define the cohomology groups.

Definition 3.1. Let X be a simplicial complex. The d-th cohomology group is given by

$$H^{d}(X) := \frac{\ker(\delta : Hom(\widetilde{C_{d}}(X), \mathbb{Z}) \to Hom(\widetilde{C_{d-1}}(X), \mathbb{Z}))}{im(\delta : Hom(\widetilde{C_{d-1}}(X), \mathbb{Z}) \to Hom(\widetilde{C_{d-2}}(X), \mathbb{Z}))}$$

We should remark that if the coefficients are chosen over a field, then the cohomology group H^d is indeed the dual of the homology group H_d . See Exercise ??. However, this is not true if the coefficients are not chosen over a field. A simple example is to consider the multiplicationby-2 map $m : \mathbb{Z} \to \mathbb{Z}, x \mapsto 2x$. Dualizing the map gives the same map $m^* : \mathbb{Z} \to \mathbb{Z}, x \mapsto 2x$. Therefore, the kernel is 0 whereas the cokernel is $\mathbb{Z}/2\mathbb{Z}$.

Now we can formulate the Poincare Duality, which gives a magical relation between homology and cohomology groups over a specific class of manifolds.

Theorem 3.2 (Poincare Duality). If X^n is a manifold which is compact, closed and orientable, then we have

$$H_k(X) \cong H^{n-k}(X)$$

for any $0 \le k \le n$.

Roughly speaking (at least true over a field), the group $H_k(X)$ is dual to the group $H_{n-k}(X)$. The induced pairing from the Poincare Duality is called the intersection pairing.

4 Exercise

Exercise 1. What is the minimum number of 2-simplex on a torus T^2 ?

Exercise 2. Let ∂ be the boundary map with respect to the simplicial homology. For all $d \ge 2$, show that $\partial^2 : C_d \to C_{d-2}$.

Exercise 3. Calculate the homology groups of the circles.

Exercise 4. Let ∂ be the boundary map with respect to the singular homology. For all $d \ge 2$, show that $\partial^2 : C_d(X) \to C_{d-2}(X)$.

Exercise 5. Let *X* be the following Δ -complex.

Show that $H_1(X) = \mathbb{Z} \oplus \mathbb{Z}$ and $\pi_1 = \langle a, b \rangle$, a free group generated by two elements. **Exercise 6.** Show that $\pi_2(T^2) = 0$. **Exercise 7.**