
Blow ups

1 Introduction

In this lecture, we give a gentle introduction to the concept of blowing up –
performing a particular birational transformation to a scheme or manifold X
which allows one to look more closely at some zero locus Z inside it. When
Z is smooth, the procedure basically consists of cutting Z out and replacing it
with the projectivisation of its normal bundle. The blow up however is defined
extrinsically, which makes it applicable in the case when Z is singular. This is
particularly useful, as it allows one to analyse precisely the way that“tangent
spaces come together” at the singular locus of Z.

2 First Example: Blowing up C2 at the origin

Following the outline in the introduction, we consider the problem of finding
an algebraic variety which is obtained from C2 by cutting out the origin 0 and
replacing it by the projectivisation of its normal bundle, which is of course just
P1. Moreover we would like to glue in this P1 in such a way that when we
approach the origin along a fixed complex line in C2, we arrive at the point in
P1 which represents precisely this line.

The key idea is to consider the graph of the quotient map:

C2 \ {0} −→ P1

(x, y) 7→ [x : y].

Writing X and Y for the homogeneous coordinates on P1, this graph is the space

{((x, y), [X,Y ]) ⊆ C2 \ {0} × P1 : xY = Xy}.

Now we take the closure of this graph in C2 × P1. The equation defining the
graph still holds, so we just get

{xY = Xy} ⊆ C2 × P1.

This defines the blow-up of C2 at 0 and we denote it as Bl0C2. Let us verify
that it is indeed the space we were after.

First note that we have the obvious projection

π : Bl0C2 ⊆ C2 × P1 −→ C2.

For any point (x, y) ∈ C2 \ {0}, there is a unique line through this point and
the origin. Hence we get a unique point in P1 corresponding to this line, i.e.
π|C2\{0}×P1 is a bijection. We also note that the preimage of 0 ∈ C2 under
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π is simply a copy of P1 since when x = y = 0, the variables X and Y are
uncostrained.

Recall (see the lecture “Spec and Proj”) that the tautological line bundle of
P1 is defined as OP1(−1) := {(v, [v]) ∈ C2 × P1}. So we see that the blow up of
C2 at 0 is precisely OP1(−1) but rather than viewing this space as a line bundle
over P1, we now concentrate on the projection π : OP1(−1) −→ C2.

To visualise this maps, a good picture to keep in mind is the following.

In this picture the zero section of OP1(−1) (i.e. the ellipse at the top of
the picture) is contracted to the origin by the map π. This picture illustrates
an important property: blowing up at the origin pulls apart directions at the
origin. At the origin the blow-up remembers which line 0 is on, i.e. which line
“I came in on.” This is precisely the property we wanted the blow up to have.

3 Blowing up an affine variety along an ideal

After having seen this example, we now describe a general blow-up of an affine
variety along an ideal.

We start by considering an affine variety X ⊆ An and an ideal I of the

coordinate ring C[x1,...,xn]
I(X) of X. The zero locus

Z(I) = {x ∈ X : f(x) = 0 ∀f ∈ I}

defines a closed subvariety of X and the blow up of X along Z will be a variety
isomorphic to X everywhere away from Z(I). It is defined as follows:

Definition 3.1. Let {f0, f1, . . . , fr} be a set of generators for I. We define the
blow-up of X at I to be

BlI X = {(x, [f0(x) : f1(x) : . . . : fr(x)]) ∈ An × Pr : x ∈ X \ Z(I)},

that is, it is the closure inside An × Pr of the graph of the morphism

F : X \ Z(I)→ Pr, x 7→ [f0(x) : f1(x) : . . . : fr(x)].

We see that this is well-defined, since at any point x in X\Z(I) at least one of
the fi does not vanish. Note that BlI X comes with a morphism π : BlI X → X
given by projection onto the first coordinate. We define

Definition 3.2. The exceptional locus of the blow up of X at I is defined to
be E = π−1(Z(I)).
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Remark 3.3. You might be worried that the above notation doesn’t make sense,
at least not until we show that BlI X does not depend on the choice of generators
for I. We do this in Proposition 3.4 below. Before that, we make the following
observations:

1. Note that BlI X \ E is isomorphic to X \ Z(I) since there the morphism
π is invertible with inverse

σ : X \ Z(I) −→ BlI X \ E
σ : x 7−→ (x, [f0(x) : f1(x) : . . . : fr(x)]).

2. Let us investigate more closely how the closure in Definition 3.1 is formed.
For this purpose, we need to know how to express the Zariski closed subsets
of An × Pr. We can embed An × Pr into Pn × Pr and there we know from
the Segre embedding that the closed subsets are intersections of vanishing
sets of polynomials of the form f(x0, x1, . . . , xn, X0, X1, . . . , Xr) which are
bihomogeneous in the x and X variables, that is, they satisfy

f(λx0, λx1, . . . , λxn, X0, X1, . . . , Xr) = λpf(x0, x1, . . . , xn, X0, X1, . . . , Xr)

f(x0, x1, . . . , xn, λX0, λX1, . . . , λXr) = λqf(x0, x1, . . . , xn, X0, X1, . . . , Xr)

for some p, q ∈ N and all λ ∈ C (the pair (p, q) is then called the bidegree
of f). Thus a basis for the closed subsets of An×Pr are precisely vanishing
sets of polynomials f(x1, . . . , xn, X0, X1, . . . , Xr), which are homogeneous
only in the X-variables.

We now prove the independence of generators. This proof will become ob-
solete when we give a much more general definition of blow up, but it is useful
for our current hands-on approach.

Proposition 3.4. Let {g0, g1, . . . , gs} be another set of generators for I and let
us temporarily write

Bl(f0,...,fr)X = {(x, [f0(x) : f1(x) : . . . : fr(x)]) ∈ An × Pr : x ∈ X \ Z(I)}

and

Bl(g0,...,gs)X = {(x, [g0(x) : g1(x) : . . . : gs(x)]) ∈ An × Ps : x ∈ X \ Z(I)}.

Then we have that
Bl(f0,...,fr)X

∼= Bl(g0,...,gs)X

Proof. For this proof we may think of the ideal I as lying inside C[x1, . . . , xn]
and containing the vanishing ideal of X, so that {f0, . . . , fr} ⊆ C[x1, . . . , xn] and
{g0, g1, . . . , gs} ⊆ C[x1, . . . , xn]. Thus we have polynomial relations fi =

∑
j hijgj

and gl =
∑
m klmfm for some {hij , klm : 0 ≤ i,m ≤ r, 0 ≤ j, l ≤ s} ⊆

C[x1, . . . , xn]. We define the morphism

φ : Bl(f0,...,fr)X −→ Bl(g0,...,gs)X

φ : (x, [X0 : X1 : . . . : Xr]) 7−→

(
x,

[
r∑

m=0

k0m(x)Xm : . . . :

r∑
m=0

ksm(x)Xm

])
.
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We need to check that this is well-defined, i.e. that {
∑
k0m(x)Xm, . . . ,

∑
ksm(x)Xm}

cannot vanish simultaneously on Bl(f0,...,fr)X. Consider the set of polynomials{
ψi = Xi −

∑s
j=o hij (

∑r
m=0 kjmXm) : 0 ≤ i ≤ r

}
. These are homogeneous in

the X-variables and vanish on

{(x, [f0(x) : f1(x) : . . . : fr(x)]) ∈ An × Pr : x ∈ X \ Z(I)}.

It follows from our discussion in Remark 3.3 that they must vanish on the
whole of Bl(f0,...,fr)X. Thus we can’t have {

∑
k0m(x)Xm, . . . ,

∑
ksm(x)Xm}

all vanishing at a point in Bl(f0,...,fr)X, since then vanishing of the ψi will imply
Xi = 0 ∀i, a contradiction.

So F is well-defined and it is clearly invertible with an analogously con-
structed inverse morphism. Hence Bl(f0,...,fr)X

∼= Bl(g0,...,gs)X.

We now define one more notion, regarding subvarieties of the one we wish
to blow up.

Definition 3.5. Let Y ⊆ X be a closed subvariety different from Z. We define
the strict transform of Y in π : BlI X → X to be π−1(Y \ Z(I)).

Remark 3.6. Note that with this definition it is clear that the strict transform
of Y is in fact BlI∩I(Y ) Y . This is the crucial functoriality property of blow
ups - we can compute the blow up of a variety by first embedding it into a
larger one, blowing that up and taking strict transform. The price we’ll pay
for writing down a general, coordinate free definition of blowing up is that this
functoriality property will not be obvious (though, of course, still true).

Using the theory we’ve just developed, we will now revisit the example from
the beginning.

Example 3.7. The blow up of C2 = Spec (C[x1, x2]) at the (reduced) origin.
The ideal we wish to blow up in is then (x1, x2) / C[x1, x2] and we will write
Bl0 C2 as a shorthand for Bl(x1,x2) C2 . So we have

Bl0 C2 = {((x1, x2), [x1 : x2]) ∈ C2 × P1 : (x1, x2) 6= (0, 0)}
= {((x1, x2), [X1 : X2]) ∈ C2 × P1 : x1X2 −X1x2 = 0}
= OP1(−1)

Exercise 3.8. If we are working over R, show that Bl0 R2 is topologically
R2 #RP 2 (remove a small disc around the origin and identify antipodal points
on the resulting boundary). Then we see that in fact ORP 1(−1) is the Möbius
bundle and this justifies the common depiction of the blow up we give in Figure
1.

Exercise 3.9. Similarly, show that Bl0 C2 is topologically C2 #P2, where the
bar denotes opposite orientation. To do this, show that the blow up removes
a small D4 centered at the origin and then identifies the Hopf fibres on the
introduced boundary S3.

Exercise 3.10. Let E denote the exceptional divisor in Bl0 Cn. Show that the
intersection product of E with itself equals −1.
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Figure 1: Common depiction of Bl0R2

4 Blowing up a complex manifold

We have seen how to blow up Cn at the origin. We now extend this notion to
blowing up a complex manifold at a point.

Definition 4.1. Let P ⊆ Cn be a polydisc centered around 0. We define the
blow up of P at 0 to be P̃ = π−1(P ), where π : Bl0 Cn → Cn is the usual
surjection.

Definition 4.2. Let M be a smooth complex manifold of complex dimension
n and let x ∈ M . Let U ⊆ M be a coordinate neighbourhood of x with chart
ϕ : U → P , where P is a polydisc in Cn and ϕ(x) = 0. Then we have a
biholomorphism ϕ−1 ◦ π : P̃ \E → U \ {x}. We define the blow up BlxM of M
at x to be the complex manifold obtained by gluing P̃ to M \{x} along ϕ−1 ◦π.

Here we implicitly use the charts on P̃ , viewed as a submanifold ofOPn−1(−1),
which now become charts on BlxM . We also have, by abuse of notation, the
surjection map π : BlxM → M and the exceptional divisor is E = π−1(x). It
is not immediately obvious however that the construction is independent of co-
ordintes. So suppose ϕ′ : U ′ → P ′ is another holomorphic chart, with ϕ′(x) = 0
and let F = ϕ′◦ϕ−1 be the transition map defined on some open neighbourhood
of 0 in Cn. Using this chart we obtain an a priori different blow up, which we
denote Bl′xM . We wish to show that it is biholomorphic to BlxM .

Exercise 4.3. Show that it suffices to give a biholomorphism between some
open neighbourhoods of the exceptional divisors in P̃ and P̃ ′. Then note that
away from the exceptional divisors we can use F (or, rather, its lift) and this
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can be extended over E ∼= Pn−1 by the map

[X1 : X2 : . . . : Xn] 7−→





∂F1

∂x1

∣∣∣
0

∂F1

∂x2

∣∣∣
0
· · · ∂F1

∂xn

∣∣∣
0

∂F2

∂x1

∣∣∣
0

∂F2

∂x2

∣∣∣
0
· · · ∂F2

∂xn

∣∣∣
0

...
...

...
∂Fn

∂x1

∣∣∣
0

∂Fn

∂x2

∣∣∣
0
· · · ∂Fn

∂xn

∣∣∣
0



X1

X2

...
Xn




Remark 4.4. Note again that the exceptional divisor of the blow up of a variety
(manifold) X at a smooth point x is P(TxX). So blowing up at a point has the
effect of separating the tangent directions at that point.

5 Key examples

We now give a recipe for computing the blow up of an affine variety at a point.
Let X = Z(g1, g2, . . . , gt) ⊆ An be an affine variety such that 0 ∈ X. Then
by functoriality of blow ups we have Bl0X ⊆ Bl0 Cn ⊆ Cn × Pn−1. For each
1 ≤ i ≤ t let us write ghomi for the lowest degree homogeneous part of gi which
is not identically 0 and set di = deg(ghomi ). Consider a formal replacement
procedure, where we obtain a polynomial g̃i ∈ C[x1, . . . , xn, X1, . . . , Xn] from
gi by replacing exactly di of the variables xj in each monomial of gi with the
corresponding variables Xj (for monomials of degree greater than di the proce-
dure involves a choice, but this is will not be important for our purposes). Note
that the polynomial we obtain in this way is homogeneous of degree di in the
X-variables. We now claim that

Bl0X = {((x1, . . . , xn), [X1 : . . . : Xn]) ∈ Bl0 Cn : g̃i(x,X) = 0 ∀ 1 ≤ i ≤ t}.

In particular, the exceptional divisor of Bl0X is given by

Z({ghomi (X1, . . . , Xn) : 1 ≤ i ≤ t}) ⊆ Pn−1.

Exercise 5.1. Prove the above claim.

Exercise 5.2. Compute the blow ups at the origin of the following curves in C2:
{x1x2 = 0}, {x22 − x31 − x21 = 0}, {x22 − x31 = 0}, {x22 − x41 = 0}. Draw their real
cartoons and investigate their exceptional divisors.

Observe that the exceptional divisor in each of the above examples consists
of precisely one point for each tangent direction to the curve at 0. In fact,
by blowing up we have resolved the singularities in the first three curves, but
not in the fourth one. We have however made the singularity milder – the
two irreducible components no longer have a common tangent at their point of
intersection. So we might hope that performing a second blow up will separate
them.

Exercise 5.3. Desingularize the curve {x22−x41 = 0} by applying two repeated
blow ups and obtain the following sequence of diagrams.

6



In fact, we could have accomplished the same effect in one go. Note that the
problematic tangent direction is the one corresponding to the x1-axis. So instead
of blowing up the reduced origin we may consider blowing up the thickened point,
which carries infinitesimal information in the x1-direction.

Exercise 5.4. Calculate explicitly Bl(x2
1,x2)X, whereX is the curve Z(x22 − x41).

The last exercise indicates that it really is the ideal in which we are blowing
up which is important and not just its reduced vanishing locus. In other words,
we need the language of schemes to define the blow up in full generality and
this is what we do next.

6 The general definition

We start by defining the blow up of an affine Noetherian scheme X = Spec A
along a closed subscheme Z. Since Z is given as the vanishing set of some ideal
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I / A we have Z = Spec A/I.

Definition 6.1. For a Noetherian affine scheme X = Spec A and a closed
subscheme Z = Spec A/I we define the blow up of X along Z to be

BlZ X = Proj A(A⊕ I ⊕ I2 ⊕ · · · ),

where we view A ⊕ I ⊕ I2 ⊕ · · · as a graded A-algebra whose degree k piece
is Ik (with I0 = A).

Note first that this strange-looking algebra is in fact generated in degree 1 by
construction and also, by the Noetherian hypothesis, it is generated by finitely
many elements, say {x1, x2, . . . , xs}. using this, we can give a more explicit
model for it. The key point is to view I not as a subset of A but rather as the
quotient module

(A ·X1 ⊕A ·X2 ⊕ · · · ⊕A ·Xs)/ kerφ,

where X1, X2, . . . , Xs are just formal variables and φ is the surjective A−module
homomorphism

φ : A ·X1 ⊕A ·X2 ⊕ · · · ⊕A ·Xs −→ I

φ : Xi 7−→ xi.

In fact we can extend φ to a surjective graded algebra homomorphism

Φ: A[X1, X2, . . . , Xs] −→ A⊕ I ⊕ I2 ⊕ · · ·
Φ: Xα0

0 Xα1
1 . . . Xαn

n 7−→ (0, 0, . . . , 0, xα1
1 xα2

2 . . . xαn
n , 0, . . .),

where on the right hand side the non-zero term lies in position α1+α2+ · · ·+αn
and the map is A−linear. In many concrete cases we have a much more concise
way of writing down the kernel of this map and thus get a handle on the algebra
A⊕ I ⊕ I2 ⊕ · · · . Let us see how we can compute our favourite example Bl0 C2

with this new definition.

Example 6.2. We consider X = Spec A and Z = Spec A/I with A = C[x1, x2]
and I = (x1, x2). So from the discussion above we have that A⊕ I ⊕ I2⊕ · · · is
the quotient of the graded algebra C[x1, x2][X1, X2] by its ideal (x1X2−X1x2).
So in fact we have:

Bl0 C2 = Proj (C[x1, x2, X1, X2]/(x1X2 −X1x2))

whose closed points are precisely {((x1, x2), [X1 : X2]) : x1X2 −X1x2 = 0}.

We now move on to give the general definition of a blow up.
Let X be any Noetherian scheme and Z – a closed subscheme. Then on every

affine open U = Spec A in X, Z∩U is given as the (scheme-theoretic) vanishing
set of some ideal I / A which defines an ideal sheaf Ĩ on Spec A. These local
ideal sheaves glue together to give a sheaf IZ . We can now consider the sheaf
of graded OX−algebras OX ⊕IZ ⊕I 2

Z ⊕ · · · . On each affine open subset U =
Spec A ofX we can then define a scheme Proj

(
OX(U)⊕IZ(U)⊕IZ(U)2 ⊕ · · ·

)
.

In fact these schemes glue together to define a new scheme which we denote
Proj X

(
OX ⊕IZ ⊕I 2

Z ⊕ · · ·
)
. Moreover there is a natural morphism

π : Proj
(
OX ⊕IZ ⊕I 2

Z ⊕ · · ·
)
→ X.

Finally we state the most general definition of a blow up:
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Definition 6.3. Let X be a Noetherian scheme and Z a closed subscheme.
Then we define the blow up of X along Z to be

BlZ X = Proj
(
OX ⊕IZ ⊕I 2

Z ⊕ · · ·
)
.

The exceptional divisor is π−1(Z), where π : Proj X
(
OX ⊕IZ ⊕I 2

Z ⊕ · · ·
)
→

X is the natural morphism.
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