Solutions to Exercises in Cassels Lectures on Elliptic Curves

Yankı Lekili

Chapter 0

No exercises given.

Chapter 1

No exercises given.

Chapter 2

1) For each sets of p,m,r given, either find an $x \in \mathbb{Z}$ such that

 $|r - x|_p \leq p^{-m}$

or show that no such x exists.

(i) $p = 257, r = 1/2, m = 1;$

- ► $|\frac{1}{2} x| \le 257^{-1}$ if and only if $257 | 2x 1$. So, take $x = 258/2 = 129$.
- (ii) $p = 3, r = 7/8, m = 2;$
- ► $|\frac{7}{8} x| \leq 3^{-2}$ if and only if 9 | 8x 7. So, take $x = 2$.
- (iii) $p = 3, r = 7/8, m = 7;$

 $\blacktriangleright |\frac{7}{8}-x| \leq 3^{-7}$ if and only if $3^7 | 8x-7$. We try to solve $8x = 7(3^i)$ order by order for $i = 2, ..., 7$. For $i = 2$, the previous exercise gives 2 is a solution, so let's write $x = 2 + 3^2 a_2 + 3^3 a_3 + 3^4 a_4 +$ $3⁵a₅ + 3⁶a₆$ for $a_i \in \{0,1,2\}$. $8.2 - 7 = 9$ so to solve $8x = 7(27)$ we need a non-zero $a₂$. We try $a_2 = 1$ and get $8.(2+9) - 7 = 81 \equiv 0(81)$, hence we can take $x = 2 + 3^2 + 3^4a_4 + 3^5a_5 + 3^6a_6$. We try $a_4 = 1$, then $8(2 + 9 + 81) - 7 = 729 = 3^6$. Hence, we get $x = 2 + 9 + 81 + 729$. Finally, let us try $a_6 = 1$, we compute $729 + 8.729 = 9.729 = 3^8$. So, take $x = 821$.

(iv)
$$
p = 3, r = 5/6, m = 9;
$$

 $\blacktriangleright |\frac{5}{6} - x| \leq 3^{-9}$ if and only if $3^{10} | 6x - 5$ (since $3 | 6$). But, this is impossible since $6x - 5 \equiv$ 2(3).

(v) $p = 5, r = 1/4, m = 4;$

 $\blacktriangleright |\frac{1}{4} - x| \le 5^{-4}$ if and only if $5^4 | 4x - 1$.

Let's try to solve $4x \equiv 1(5^i)$ for $i = 1, 2, 3, 4$. Write $x = a_0 + 5a_1 + 5^2a_2 + 5^3a_3$ with $a_i \in$ $\{0, 1, 2, 3, 4\}$. We can easily see $a_0 = 4$ solves $4x \equiv 1(5)$. Next, we try $4.(4 + 5a_1) \equiv 1(25)$. This reduces to $20a_1 \equiv 10(25)$, which has a solution $a_1 = 3$. Next, we have $4.(4+5.3+25a_2) \equiv 1(125)$ which reduces to $100a_2 = 50(125)$. So, take $a_2 = 3$. Finally, we have $4.(4+5.3+25.3+125.a_3) \equiv$ 1(625) which is equivalent to $500a_3 = 250(625)$. Hence, $a_3 = 3$. So, take $x = 4 + 5.3 + 25.3 +$ $125.3 = 469.$

2) Construct further examples along the lines of Exercise 1 until the whole business seems trivial.

- \blacktriangleright Take $p = 57$, just kidding.
- 3) For given p, m, r either find an $x \in \mathbb{Z}$ such that

$$
|r - x^2|_p \le p^{-m}
$$

or show that no such x exists.

(i) $p = 5, r = -1, m = 4;$

► $|-1-x^2|_p \le 5^{-4}$ if and only if $5^4|x^2+1$. Let's try $x = a_0 + a_15 + a_25^2 + a_35^3$. We need $a_0^2 + 1 \equiv 0(5)$. There are two solutions to this: $a_0 = 2, 3$. We look for solutions of the form $x_0 = 2 + a_1 5 + a_2 5^2 + a_3 5^3$ and $x_1 = 3 + b_1 5 + b_2 5^2 + b_3 5^3$. Next, we need to solve $(2 + a_1 5)^2 + 1 \equiv 0(25)$ and $(3 + b_1 5)^2 + 1 \equiv 0(25)$. We get $5 + 20a_1 \equiv 0(25)$ and $10 + 30b_1 \equiv 0(25)$. Thus, $a_1 = 1$ and $b_1 = 3$. Next, we solve $(2 + 1.5 + a_2 5^2)^2 + 1 \equiv 0(125)$ and $(3+3.5+b_25^2)^2+1 \equiv 0(125)$. We get $50+100a_2 \equiv 0(125)$ and $75+25b_2 \equiv 0(125)$. Thus, $a_2 = 2$ and $b_2 = 2$. Finally, we look for solutions to $(2 + 1.5 + 2.5^2 + a_3 5^3)^2 + 1 \equiv 0(125)$ and $(3+3.5+2.5^2+b_35^3)^2+1 \equiv 0(125)$. Expanding these, we find $125+500a_3 \equiv 0(625)$ and $250 + 125b_3 \equiv 0(625)$, so $a_3 = 1$ and $b_3 = 3$. Therefore, the solutions are

$$
2 + 1.5 + 2.52 + 1.53
$$
, $3 + 3.5 + 2.52 + 3.53$

(ii) $p = 5, r = 10, m = 3;$

► $|10-x^2|_p \le 5^{-3}$ if and only if $5^3 | x^2 - 10$. This means $5|x^2$ but that implies $25|x^2$. However $25 \nmid 10$, therefore, there is no solution to this with $x \in \mathbb{Z}$.

- (iii) $p = 13, r = -4, m = 3;$
- \blacktriangleright $|-4-x^2|_p \leq 13^{-3}$ if and only if $13^3 | x^2 + 4$.

We see easily that $3^2 + 4 \equiv 0(13)$ so let's try $x = 3 + a_1 13 + a_2 13^2$. Then, we get $(3 + 13a_1)^2 + 4 \equiv$ 0(13²). Hence, $13 + 78a_1 \equiv 0(169)$, so $a_1 = 2$. Then, we need to solve $(3 + 2.13 + a_2.13^2)^2 + 4 \equiv$ 0(13³). This gives $5.13^2 + a_2 58.13^2 \equiv 0(13^3)$, hence $a_2 = 10$. So, take $x = 3 + 2.13 + 10.13^2$. There is another solution if you try $x = 10 + b_1 13 + b_2 13^2$. and working this out gives another solution $x = 10 + 10.13 + 2.13^2$.

(iv) $p = 2, r = -7, m = 6;$

 \blacktriangleright $|-7 - x^2|_p \leq 2^{-6}$ if and only if $2^6 | x^2 + 7$.

We try out $x = 1 + 2a_1 + 2^2a_2 + 2^3a_3 + 2^4a_4 + 2^5a_5$ for $a_i \in \{0, 1\}$. If we square this, we see that whether $a_5 = 0$ or 1 does not matter, therefore, we can take $a_5 = 0$. Let's consider modulo 32, then by a similar reason whether $a_4 = 0$ or 1 doesn't matter, so let's consider the equation:

$$
(1 + 2a1 + 22a2 + 23a3)2 + 7 \equiv 0(32)
$$

We see that this is equivalent to $(1+2a_1+4a_2)^2+16a_3+7\equiv 0(32)$. Let's now reduce to modulo (16), then we get the equation

$$
(1+2a_1)^2 + 8a_2 + 7 \equiv 0(16)
$$

Now, by inspection, we can see that the only solutions are $a_1 = 1, a_2 = 0$ or $a_1 = 0, a_2 = 1$. Getting back to the modulo (32) equation, we get that the only solutions are $a_1 = 1, a_2 =$ $0, a_3 = 1$ or $a_1 = 0, a_2 = 1, a_3 = 0$. Finally, we want to see if either of these can be extended to the solution of the original problem for some $a_4 \in \{0,1\}$. We try $x = 1 + 2.1 + 8.1 + 16a_4$ and $x = 1 + 4.1 + 16a_4$ for $a_4 \in \{0, 1\}$. In the first case, we get $x^2 + 7 \equiv 128 + 32a_4(64)$ and in the second case we get $x^2 + 7 = 32 + 32a_4(64)$ and we see that the latter one gives the solution: $x = 1 + 4.1 + 16.1 = 21.$

(v)
$$
p = 7
$$
, $r = -14$, $m = 4$;

 \blacktriangleright $|-14-x^2|_p \leq 7^{-4}$ if and only if $7^4|x^2+14$.

It follows that $7 | x$ but then $7^2 | x^2$. Now, we arrive at contradiction, because $7^4 | x^2 + 14$, in particular implies $7^2 | x^2 + 14$ and this together with $7^2 | x^2$ implies $7^2 | 14$ which is false.

(vi)
$$
p = 7, r = 6, m = 3;
$$

► $|6-x^2|_p \le 7^{-3}$ if and only if $7^3 | x^2 - 6$.

No solution because there is no $x \in \mathbb{Z}$ such that $x^2 - 6$ is divisible by 7 as can be easily checked by trying out $x = 0, 1, 2, 3, 4, 5, 6$.

(vii) $p = 7, r = 1/2, m = 3;$ $\blacktriangleright |\frac{1}{2} - x^2|_p \le 7^{-3}$ if and only if $7^3 | 2x^2 - 1$.

Looking modulo 7, we see we have $x = 2 + 7a_1 + 7^2a_2$ or $x = 5 + 7b_1 + 7^2b_2$ are possible solution. We then look at modulo 7², we get 7^2 | $7 + 7a_1$ and 7^2 | 28b₁, so we take $a_1 = 6$ and $b_1 = 0$. Finally, $7^3 | 2(2 + 7.6 + 7^2 a_2)^2 - 1$ gives $7^3 | 2.7^2 + a_2 7^2$, hence $a_2 = 5$. Similarly, $7^3 | 2(5+7^2b_2)^2 - 1$ gives $7^3 | 7^2 + 6b_27^2$, thus $b_2 = 1$. We conclude that $2 + 7.6 + 7^2.5$ and $5 + 7^2.1$ are the desired solutions.

- 4) As in Exercise 2.
- ▶ Solution as in Exercise 2.

5) Let $p > 0$ be a prime, $p \equiv 2(3)$. For any integer $a, p \nmid a$, show that there is an $x \in \mathbb{Z}_p$ with $x^3=a.$

► Consider the group homomorphism $x \to x^3$ from \mathbb{F}_p^{\times} to itself. Since $3 \nmid p-1$, there are no order 3 elements in \mathbb{F}_p^{\times} . Therefore, this map is injective, hence also surjective. This means that we can find x_1 with $x_1^3 \equiv a(p)$. Next, suppose that we have $x_n^3 \equiv a(p^n)$ and pose $x_{n+1} = x_n + p^n y$ and we seek to solve $x_{n+1}^3 \equiv a(p^{n+1})$. We compute $x_{n+1}^3 = (x_n + p^n y)^3 \equiv x_n^3 + 3p^n x_n^2 y(p^{n+1})$. As by assumption $p^n | x_n^3 - a$, if we let y such that $3x_n^2y = \frac{x_n^3-a}{p^n}(p)$ (which we can do since $p \nmid 3x_n^2$, as $p \nmid a$ and $p \neq 3$), then $p^{n+1} \mid x_{n+1}^3 - a$ as required.

Chapter 3

6) (i) Let $p > 2$ prime and let $b, c \in \mathbb{Z}$, $p \nmid b$. Show that $bx^2 + c$ takes precisely $\frac{1}{2}(p+1)$ distinct values mod p for $x \in \mathbb{Z}$.

► It suffices to show the special case $b = 1, c = 0$, since $bm + c \equiv bn + c(p)$ implies $m \equiv n(p)$ as $p \nmid b$. Now, $x^2 \equiv y^2(p)$ then $(x - y)(x + y) \equiv 0(p)$, hence $x \equiv y(p)$ or $x \equiv -y(p)$. Therefore, the map $x \to x^2(p)$ is two-to-one except at 0, so the number of elements in the image is $1 + \frac{p-1}{2} = \frac{p+1}{2}$ $rac{+1}{2}$.

(ii) Suppose that, further, $a \in \mathbb{Z}$, $p \nmid a$. Show that there are $x, y \in \mathbb{Z}$ such that $bx^2 + c \equiv$ $ay^2(p)$.

 \blacktriangleright The sets of elements of the form bx^2+c and ay^2 both contain $\frac{p+1}{2}$ elements since $\frac{p+1}{2}+\frac{p+1}{2}$ > p, these sets have to overlap.

7) Let $a, b, c \in \mathbb{Z}_p$, $|a|_p = |b|_p = |c|_p = 1$ where p is prime, $p > 2$. Show that there are $x, y \in \mathbb{Z}_p$ such that $bx^2 + c = ay^2$.

 \blacktriangleright From the previous exercise, we know that there is a solution (x_1, y_1) modulo p. Suppose (x_n, y_n) satisfy $bx_n^2 + c \equiv ay_n^2(p^n)$. Let $x_{n+1} = x_n + p^n u$ and $y_{n+1} = y_n + p^n v$. Then, we want to solve $bx_n^2 + 2bx_np^nu + c \equiv ay_n^2 + 2ay_np^nv(p^{n+1})$. This boils down to solving $2bx_nu - 2ay_nv \equiv$ $\frac{ay_n^2-bx_n^2-c}{p^n}(p)$. This can be solved as long as p does not divide both x_n and y_n and we know that because $|c|_p = 1$.

8) Let $p > 2$ be prime, $a_{ij} \in \mathbb{Z}$ $(1 \le i, j \le 3)$, $a_{ji} = a_{ij}$ and let $d = \det(a_{ij})$. Suppose that $p \nmid d$. Show that there are $x_1, x_2, x_3 \in \mathbb{Z}$ not all divisible by p, such that $\sum_{i,j} a_{ij} x_i x_j = 0(p)$.

► Suppose $a_{ij} = a_{ji} \neq 0$, make a Z-linear change of co-ordinates by sending $x_i \rightarrow x_i - a_{ij}x_j$ to transform $\sum_{i,j} a_{ij} x_i x_j$ to $f_1 x_1^2 + f_2 x_2^2 + f_3 x_3^2$. The condition on d becomes $p \nmid f_1 f_2 f_3$. Take $x_3 = 1$ (or any integer that is not divisible by p), then the problem reduces to what we solved in Exercise 1 by letting $f_1 = b, x_1 = x, f_2 = -a, x_2 = y, f_3x_3^2 = c.$

9) Let $a, b, c \in \mathbb{Z}$, $2 \nmid abc$. Show that a necessary and sufficient condition that the only solution in \mathbb{Q}_2 of $ax^2 + by^2 + cz^2 = 0$ is the trivial one is that $a \equiv b \equiv c(4)$.

▶ Suppose $(a_1, a_2, a_3) \neq 0$ is a non-trivial solution in \mathbb{Q}_2 then we can assume that max $|a_i|_2 = 1$ by multiplying with an element of \mathbb{Q}_2 . This means that at least one the a_i is a unit. Now, since $aa_1^2 + ba_2^2 + ca_3^2 = 0$ and $2 \nmid abc$, it follows that precisely two of the a_j are units. Because of the non-archimedean inequality, we must have two of the $|aa_1|^2$, $|ba_2|^2$, $|ca_3|^2$ must be equal and the other one is less than or equal to. Suppose, for instance, that $|a_2| = |a_3| = 1$, and $|a_1| \leq 1$. By examining modulo 2, we see then that $|a_1| < 1$. Now, $2 | a_1$, hence it follows that $b + c \equiv 0(4)$ but b, c are odd, hence b is not equivalent to c modulo 4.

Conversely, suppose that $(a, b, c) \neq (1, 1, 3)$ or $(1, 3, 3)$ modulo 4, and we want to construct a solution in \mathbb{Q}_2 . By multiplying the equation with -1 , we can assume that we are in the case where $(a, b, c) = (1, 1, 3)$ modulo 4, or equivalently we are interested in the equation $ax^2 + by^2 = (-c)z^2$. Now, multiply both sides with $-(1/c)$ to and redefine a, b to reduce to the case $ax^2 + by^2 = z^2$ where we still have $(a, b) = (1, 1)$ modulo 4. We now appeal to Lemma 4 from Chapter 2, which says that $ax^2 + by^2$ is a square in \mathbb{Q}_2 if and only if $ax^2 + by^2 \equiv 1(8)$. We have that a, b are either 1 or 5 modulo 8. So it suffices to find solutions for the four equations: $x^2 + y^2 \equiv 1(8)$, $5x^2 + y^2 \equiv 1$ $1(8)$, $x^2 + 5y^2 \equiv 1(8)$, $5x^2 + 5y^2 \equiv 1(8)$. It is very easy to solve these congruence equations. For example $(3, 0), (1, 2), (2, 1), (2, 1)$ are solutions in the respective order.

10) For each of the following sets of a, b, c find the set of primes p (including ∞) for which the only solution of $ax^2 + by^2 + cz^2 = 0$ in \mathbb{Q}_p is the trivial one:

(i) $(a,b,c) = (1,1,-2)$

▶ Since the equation is homogeneous for $p \neq \infty$, we may assume that if there is a non-trivial solution (x, y, z) , then $x, y, z \in \mathbb{Z}_p$.

We see that $(1, 1, 1)$ is a solution in Z. Therefore, there are non-trivial solutions for every p $(including \infty).$

(ii) $(a,b,c) = (1,1,-3)$

► This is the equation $x^2 + y^2 = 3z^2$. It is easy to obtain solutions over R such as $(\sqrt{3}, 0, 1)$. There are no non-trivial solutions over \mathbb{Q}_2 by the previous exercise since $1 \equiv -3(4)$. There no solutions over \mathbb{Q}_3 since the only way x^2+y^2 is divisible by 3 is if both x and y are divisible by 3 but that implies z has to be divisible by 3, and continuing this way we see that $|x|_3 = |y|_3 = |z|_3 = 0$, which implies $x = y = z = 0 \in \mathbb{Q}_3$. There are non-trivial solutions over any other prime by Exercise 2.

(iii) $(a,b,c) = (1,1,1)$

 \blacktriangleright This is the equation $x^2 + y^2 + z^2 = 0$. There are no non-trivial solutions over R since the left hand side is strictly positive unless $x = y = z = 0$. There are no non-trivial solutions over \mathbb{Q}_2 by the previous exercise. There are non-trivial solutions over any other prime by Exercise 2.

(iv)
$$
(a,b,c) = (14,-15,33)
$$

 \blacktriangleright This is the equation $14x^2 + 33z^2 = 15y^2$.

There are non-trivial solutions over $\mathbb R$: Take, for example, $(15\sqrt{14}, 0, 14\sqrt{15})$. There are nontrivial solutions over \mathbb{Q}_2 by the previous exercise, since 14 is not equivalent to 33 modulo 4. By Exercise 2, there are non-trivial solutions over any prime $p > 11$. It remains to the understand the cases $p = 3, 5, 7, 11$.

We see that $|x|_3 < 1$, hence we can write $x = 3\tilde{x}$ with $\tilde{x} \in \mathbb{Z}_3$. We then get the equivalent equation, $42\tilde{x}^2 + 11z^2 = 5y^2$. Multiplying both sides by 5, we get $5.42\tilde{x}^2 + 55z^2 = (5y)^2$. Now, we can appeal to Lemma 3 from Chapter 2, which says that a number is a square in \mathbb{Q}_3 if and only if it is over \mathbb{F}_3 . Reducing mo 3, we get $5.42\tilde{x}^2 + 55z^2 = z^2$. Hence, for any value of z, we will get solutions.

 $14x^2 + 33z^2 \equiv 4x^2 + 3z^2(5)$. The only way $4x^2 + 3z^2$ is divisible by 5 is if both x and z are divisible by 5 but that implies that y has to be divisible by 5, and continuing this way we see that $|x|_5 = |y|_5 = |z|_5 = 0$, which implies $x = y = z = 0 \in \mathbb{Q}_5$.

 $15y^2 - 33z^2 \equiv y^2 + 2z^2(7)$. The only way $y^2 + 2z^2$ is divisible by 7 is if both y and z are divisible by 7 but that implies that x has to be divisible by 7, and continuing this way we see that $|x|_7 = |y|_7 = |z|_7 = 0$, which implies $x = y = z = 0 \in \mathbb{Q}_7$.

If we multiply both sides by 14 we get to the equivalent equation: $(14x)^2 = 14.15y^2 - 14.33z^2$. To see that this has solutions over \mathbb{Q}_{11} we can appeal to Lemma 3 from Chapter 2, which says that a number is a square in \mathbb{Q}_{11} if and only if it is over \mathbb{F}_{11} . Reducing mod 11, we get $14.15y^{2} - 14.33z^{2} = y^{2}$. Hence, for any non-zero value of y, we will get solutions.

11) Do you observe anything about the parity of the number N of primes (including ∞) for which there is insolubility? If not, construct similar exercises and solve them until the penny drops.

▶ It seems to be always even.

12) (i) Prove your observation in (6) in the special case $a = 1, b = -r, c = -s$, where r, s are distinct primes > 2 . [Hint. Quadratic reciprocity]

 \blacktriangleright This is the equation $x^2 = ry^2 + sz^2$. Given r, s are prime numbers, the only primes where we may not have non-trivial solutions are $p = 2, r, s$. By Exercise 4, there are non-trivial solutions in \mathbb{Q}_2 if and only if at least one of r and s is 1 mod (4). As for solutions \mathbb{Q}_r we need to see if $x^2 \equiv s z^2(r)$ is solvable or equivalently whether s is a quadratic residue modulo r, and similarly for \mathbb{Q}_s we need to see if $x^2 \equiv ry^2(s)$ is solvable or equivalently whether r is a quadratic residue modulo s. The required evenness is now a direct consequence of quadratic reciprocity law which says: If r or s are congruent to 1 modulo 4, then: $x^2 \equiv r(s)$ is solvable if and only if $x^2 \equiv s(r)$ is solvable, and if r and s are congruent to 3 modulo 4, then: $x^2 \equiv r(s)$ is solvable if and only if $x^2 \equiv s(r)$ is not solvable.

(ii) [Difficult.] Prove your observation for all $a, b, c \in \mathbb{Z}$.

▶ This is equivalent to quadratic reciprocity. A proof is given in Cassel's book "Rational quadratic forms" Lemma 3.4.