
Solutions to Exercises in Cassels Lectures on Elliptic Curves

Yankı Lekili

Chapter 0

No exercises given.

Chapter 1

No exercises given.

Chapter 2

1) For each sets of p,m,r given, either find an x ∈ Z such that

|r − x|p ≤ p−m

or show that no such x exists.

(i) p = 257, r = 1/2, m = 1;

▶ |12 − x| ≤ 257−1 if and only if 257 | 2x− 1. So, take x = 258/2 = 129.

(ii) p = 3, r = 7/8, m = 2;

▶ |78 − x| ≤ 3−2 if and only if 9 | 8x− 7. So, take x = 2.

(iii) p = 3, r = 7/8, m = 7;

▶ |78−x| ≤ 3−7 if and only if 37 | 8x−7. We try to solve 8x = 7(3i) order by order for i = 2, . . . , 7.
For i = 2, the previous exercise gives 2 is a solution, so let’s write x = 2+ 32a2 + 33a3 + 34a4 +
35a5 + 36a6 for ai ∈ {0, 1, 2}. 8.2− 7 = 9 so to solve 8x = 7(27) we need a non-zero a2. We try
a2 = 1 and get 8.(2 + 9)− 7 = 81 ≡ 0(81), hence we can take x = 2 + 32 + 34a4 + 35a5 + 36a6.
We try a4 = 1, then 8(2 + 9 + 81)− 7 = 729 = 36. Hence, we get x = 2+ 9 + 81 + 729. Finally,
let us try a6 = 1, we compute 729 + 8.729 = 9.729 = 38. So, take x = 821.

(iv) p = 3, r = 5/6, m = 9;

▶ |56 − x| ≤ 3−9 if and only if 310 | 6x − 5 (since 3 | 6). But, this is impossible since 6x − 5 ≡
2(3).

(v) p = 5, r = 1/4, m = 4;
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▶ |14 − x| ≤ 5−4 if and only if 54 | 4x− 1.

Let’s try to solve 4x ≡ 1(5i) for i = 1, 2, 3, 4. Write x = a0 + 5a1 + 52a2 + 53a3 with ai ∈
{0, 1, 2, 3, 4}. We can easily see a0 = 4 solves 4x ≡ 1(5). Next, we try 4.(4 + 5a1) ≡ 1(25). This
reduces to 20a1 ≡ 10(25), which has a solution a1 = 3. Next, we have 4.(4+5.3+25a2) ≡ 1(125)
which reduces to 100a2 = 50(125). So, take a2 = 3. Finally, we have 4.(4+5.3+25.3+125.a3) ≡
1(625) which is equivalent to 500a3 = 250(625). Hence, a3 = 3. So, take x = 4 + 5.3 + 25.3 +
125.3 = 469.

2) Construct further examples along the lines of Exercise 1 until the whole business seems
trivial.

▶ Take p = 57, just kidding.

3) For given p,m, r either find an x ∈ Z such that

|r − x2|p ≤ p−m

or show that no such x exists.

(i) p = 5, r = −1, m = 4;

▶ | − 1 − x2|p ≤ 5−4 if and only if 54|x2 + 1. Let’s try x = a0 + a15 + a25
2 + a35

3. We
need a20 + 1 ≡ 0(5). There are two solutions to this: a0 = 2, 3. We look for solutions of
the form x0 = 2 + a15 + a25

2 + a35
3 and x1 = 3 + b15 + b25

2 + b35
3. Next, we need to

solve (2 + a15)
2 + 1 ≡ 0(25) and (3 + b15)

2 + 1 ≡ 0(25). We get 5 + 20a1 ≡ 0(25) and
10 + 30b1 ≡ 0(25). Thus, a1 = 1 and b1 = 3. Next, we solve (2 + 1.5 + a25

2)2 + 1 ≡ 0(125)
and (3 + 3.5 + b25

2)2 + 1 ≡ 0(125). We get 50 + 100a2 ≡ 0(125) and 75 + 25b2 ≡ 0(125). Thus,
a2 = 2 and b2 = 2. Finally, we look for solutions to (2 + 1.5 + 2.52 + a35

3)2 + 1 ≡ 0(125)
and (3 + 3.5 + 2.52 + b35

3)2 + 1 ≡ 0(125). Expanding these, we find 125 + 500a3 ≡ 0(625) and
250 + 125b3 ≡ 0(625), so a3 = 1 and b3 = 3. Therefore, the solutions are

2 + 1.5 + 2.52 + 1.53, 3 + 3.5 + 2.52 + 3.53

(ii) p = 5, r = 10, m = 3;

▶ |10− x2|p ≤ 5−3 if and only if 53 | x2 − 10. This means 5|x2 but that implies 25|x2. However
25 ∤ 10, therefore, there is no solution to this with x ∈ Z.

(iii) p = 13, r = −4, m = 3;

▶ | − 4− x2|p ≤ 13−3 if and only if 133 | x2 + 4.

We see easily that 32+4 ≡ 0(13) so let’s try x = 3+a113+a213
2. Then, we get (3+13a1)

2+4 ≡
0(132). Hence, 13+ 78a1 ≡ 0(169), so a1 = 2. Then, we need to solve (3+ 2.13+ a2.13

2)2 +4 ≡
0(133). This gives 5.132 + a258.13

2 ≡ 0(133), hence a2 = 10. So, take x = 3 + 2.13 + 10.132.
There is another solution if you try x = 10 + b113 + b213

2. and working this out gives another
solution x = 10 + 10.13 + 2.132.

(iv) p = 2, r = −7, m = 6;
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▶ | − 7− x2|p ≤ 2−6 if and only if 26 | x2 + 7.

We try out x = 1+2a1+22a2+23a3+24a4+25a5 for ai ∈ {0, 1}. If we square this, we see that
whether a5 = 0 or 1 does not matter, therefore, we can take a5 = 0. Let’s consider modulo 32,
then by a similar reason whether a4 = 0 or 1 doesn’t matter, so let’s consider the equation:

(1 + 2a1 + 22a2 + 23a3)
2 + 7 ≡ 0(32)

We see that this is equivalent to (1+2a1+4a2)
2+16a3+7 ≡ 0(32). Let’s now reduce to modulo

(16), then we get the equation

(1 + 2a1)
2 + 8a2 + 7 ≡ 0(16)

Now, by inspection, we can see that the only solutions are a1 = 1, a2 = 0 or a1 = 0, a2 = 1.
Getting back to the modulo (32) equation, we get that the only solutions are a1 = 1, a2 =
0, a3 = 1 or a1 = 0, a2 = 1, a3 = 0. Finally, we want to see if either of these can be extended
to the solution of the original problem for some a4 ∈ {0, 1}. We try x = 1 + 2.1 + 8.1 + 16a4
and x = 1 + 4.1 + 16a4 for a4 ∈ {0, 1}. In the first case, we get x2 + 7 ≡ 128 + 32a4(64) and in
the second case we get x2 +7 = 32+ 32a4(64) and we see that the latter one gives the solution:
x = 1 + 4.1 + 16.1 = 21.

(v) p = 7, r = −14, m = 4;

▶ | − 14− x2 |p≤ 7−4 if and only if 74 | x2 + 14.

It follows that 7 | x but then 72 | x2. Now, we arrive at contradiction, because 74 | x2 + 14, in
particular implies 72 | x2 +14 and this together with 72 | x2 implies 72 | 14 which is false.

(vi) p = 7, r = 6, m = 3;

▶ |6− x2|p ≤ 7−3 if and only if 73 | x2 − 6.

No solution because there is no x ∈ Z such that x2 − 6 is divisible by 7 as can be easily checked
by trying out x = 0, 1, 2, 3, 4, 5, 6.

(vii) p = 7, r = 1/2, m = 3;

▶ |12 − x2|p ≤ 7−3 if and only if 73 | 2x2 − 1.

Looking modulo 7, we see we have x = 2 + 7a1 + 72a2 or x = 5 + 7b1 + 72b2 are possible
solution. We then look at modulo 72, we get 72 | 7 + 7a1 and 72 | 28b1, so we take a1 = 6
and b1 = 0. Finally, 73 | 2(2 + 7.6 + 72a2)

2 − 1 gives 73 | 2.72 + a27
2, hence a2 = 5. Similarly,

73 | 2(5 + 72b2)
2 − 1 gives 73 | 72 + 6b27

2, thus b2 = 1. We conclude that 2 + 7.6 + 72.5 and
5 + 72.1 are the desired solutions.

4) As in Exercise 2.

▶ Solution as in Exercise 2.

5) Let p > 0 be a prime, p ≡ 2(3). For any integer a, p ∤ a, show that there is an x ∈ Zp with
x3 = a.
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▶ Consider the group homomorphism x → x3 from F×
p to itself. Since 3 ∤ p − 1, there are no

order 3 elements in F×
p . Therefore, this map is injective, hence also surjective. This means that

we can find x1 with x31 ≡ a(p). Next, suppose that we have x3n ≡ a(pn) and pose xn+1 = xn+pny
and we seek to solve x3n+1 ≡ a(pn+1). We compute x3n+1 = (xn + pny)3 ≡ x3n + 3pnx2ny(p

n+1).

As by assumption pn | x3n − a, if we let y such that 3x2ny = x3
n−a
pn (p) (which we can do since

p ∤ 3x2n, as p ∤ a and p ̸= 3), then pn+1 | x3n+1 − a as required.

Chapter 3

6) (i) Let p > 2 prime and let b, c ∈ Z, p ∤ b. Show that bx2 + c takes precisely 1
2(p+ 1) distinct

values mod p for x ∈ Z.

▶ It suffices to show the special case b = 1, c = 0, since bm + c ≡ bn + c(p) implies m ≡ n(p)
as p ∤ b. Now, x2 ≡ y2(p) then (x− y)(x+ y) ≡ 0(p), hence x ≡ y(p) or x ≡ −y(p). Therefore,
the map x → x2(p) is two-to-one except at 0, so the number of elements in the image is
1 + p−1

2 = p+1
2 .

(ii) Suppose that, further, a ∈ Z, p ∤ a. Show that there are x, y ∈ Z such that bx2 + c ≡
ay2(p).

▶ The sets of elements of the form bx2+c and ay2 both contain p+1
2 elements since p+1

2 + p+1
2 > p,

these sets have to overlap.

7) Let a, b, c ∈ Zp, |a|p = |b|p = |c|p = 1 where p is prime, p > 2. Show that there are x, y ∈ Zp

such that bx2 + c = ay2.

▶ From the previous exercise, we know that there is a solution (x1, y1) modulo p. Suppose
(xn, yn) satisfy bx2n + c ≡ ay2n(p

n). Let xn+1 = xn + pnu and yn+1 = yn + pnv. Then, we want
to solve bx2n +2bxnp

nu+ c ≡ ay2n +2aynp
nv(pn+1). This boils down to solving 2bxnu− 2aynv ≡

ay2n−bx2
n−c

pn (p). This can be solved as long as p does not divide both xn and yn and we know that
because |c|p = 1.

8) Let p > 2 be prime, aij ∈ Z (1 ≤ i, j ≤ 3), aji = aij and let d = det(aij). Suppose that p ∤ d.
Show that there are x1, x2, x3 ∈ Z not all divisible by p, such that

∑
i,j aijxixj = 0(p).

▶ Suppose aij = aji ̸= 0, make a Z-linear change of co-ordinates by sending xi → xi − aijxj
to transform

∑
i,j aijxixj to f1x

2
1 + f2x

2
2 + f3x

2
3. The condition on d becomes p ∤ f1f2f3. Take

x3 = 1 (or any integer that is not divisible by p), then the problem reduces to what we solved
in Exercise 1 by letting f1 = b, x1 = x, f2 = −a, x2 = y, f3x

2
3 = c.

9) Let a, b, c ∈ Z, 2 ∤ abc. Show that a necessary and sufficient condition that the only solution
in Q2 of ax2 + by2 + cz2 = 0 is the trivial one is that a ≡ b ≡ c(4).

▶ Suppose (a1, a2, a3) ̸= 0 is a non-trivial solution in Q2 then we can assume that max|ai|2 = 1
by multiplying with an element of Q2. This means that at least one the ai is a unit. Now, since
aa21 + ba22 + ca23 = 0 and 2 ∤ abc, it follows that precisely two of the aj are units. Because of the
non-archimedean inequality, we must have two of the |aa1|2, |ba2|2, |ca3|2 must be equal and the
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other one is less than or equal to. Suppose, for instance, that |a2| = |a3| = 1, and |a1| ≤ 1. By
examining modulo 2, we see then that |a1| < 1. Now, 2 | a1, hence it follows that b + c ≡ 0(4)
but b, c are odd, hence b is not equivalent to c modulo 4.

Conversely, suppose that (a, b, c) ̸= (1, 1, 3) or (1, 3, 3) modulo 4, and we want to construct a
solution inQ2. By multiplying the equation with−1, we can assume that we are in the case where
(a, b, c) = (1, 1, 3) modulo 4, or equivalently we are interested in the equation ax2+by2 = (−c)z2.
Now, multiply both sides with −(1/c) to and redefine a, b to reduce to the case ax2 + by2 = z2

where we still have (a, b) = (1, 1) modulo 4. We now appeal to Lemma 4 from Chapter 2, which
says that ax2+ by2 is a square in Q2 if and only if ax2+ by2 ≡ 1(8). We have that a, b are either
1 or 5 modulo 8. So it suffices to find solutions for the four equations: x2+y2 ≡ 1(8), 5x2+y2 ≡
1(8), x2 + 5y2 ≡ 1(8), 5x2 + 5y2 ≡ 1(8). It is very easy to solve these congruence equations. For
example (3, 0), (1, 2), (2, 1), (2, 1) are solutions in the respective order.

10) For each of the following sets of a, b, c find the set of primes p (including ∞) for which the
only solution of ax2 + by2 + cz2 = 0 in Qp is the trivial one:

(i) (a,b,c) = (1,1,-2)

▶ Since the equation is homogeneous for p ̸= ∞, we may assume that if there is a non-trivial
solution (x, y, z), then x, y, z ∈ Zp.

We see that (1, 1, 1) is a solution in Z. Therefore, there are non-trivial solutions for every p
(including ∞).

(ii) (a,b,c) = (1,1,-3)

▶ This is the equation x2 + y2 = 3z2. It is easy to obtain solutions over R such as (
√
3, 0, 1).

There are no non-trivial solutions over Q2 by the previous exercise since 1 ≡ −3(4). There no
solutions overQ3 since the only way x2+y2 is divisible by 3 is if both x and y are divisible by 3 but
that implies z has to be divisible by 3, and continuing this way we see that |x|3 = |y|3 = |z|3 = 0,
which implies x = y = z = 0 ∈ Q3. There are non-trivial solutions over any other prime by
Exercise 2.

(iii) (a,b,c) = (1,1,1)

▶ This is the equation x2 + y2 + z2 = 0. There are no non-trivial solutions over R since the left
hand side is strictly positive unless x = y = z = 0. There are no non-trivial solutions over Q2 by
the previous exercise. There are non-trivial solutions over any other prime by Exercise 2.

(iv) (a,b,c) = (14,-15,33)

▶ This is the equation 14x2 + 33z2 = 15y2.

There are non-trivial solutions over R: Take, for example, (15
√
14, 0, 14

√
15). There are non-

trivial solutions over Q2 by the previous exercise, since 14 is not equivalent to 33 modulo 4. By
Exercise 2, there are non-trivial solutions over any prime p > 11. It remains to the understand
the cases p = 3, 5, 7, 11.

We see that |x|3 < 1, hence we can write x = 3x̃ with x̃ ∈ Z3. We then get the equivalent
equation, 42x̃2 + 11z2 = 5y2. Multiplying both sides by 5, we get 5.42x̃2 + 55z2 = (5y)2. Now,
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we can appeal to Lemma 3 from Chapter 2, which says that a number is a square in Q3 if and
only if it is over F3. Reducing mo 3, we get 5.42x̃2 + 55z2 = z2. Hence, for any value of z, we
will get solutions.

14x2 + 33z2 ≡ 4x2 + 3z2(5). The only way 4x2 + 3z2 is divisible by 5 is if both x and z are
divisible by 5 but that implies that y has to be divisible by 5, and continuing this way we see
that |x|5 = |y|5 = |z|5 = 0, which implies x = y = z = 0 ∈ Q5.

15y2 − 33z2 ≡ y2 + 2z2(7). The only way y2 + 2z2 is divisible by 7 is if both y and z are
divisible by 7 but that implies that x has to be divisible by 7, and continuing this way we see
that |x|7 = |y|7 = |z|7 = 0, which implies x = y = z = 0 ∈ Q7.

If we multiply both sides by 14 we get to the equivalent equation: (14x)2 = 14.15y2 − 14.33z2.
To see that this has solutions over Q11 we can appeal to Lemma 3 from Chapter 2, which
says that a number is a square in Q11 if and only if it is over F11. Reducing mod 11, we get
14.15y2 − 14.33z2 = y2. Hence, for any non-zero value of y, we will get solutions.

11) Do you observe anything about the parity of the number N of primes (including ∞) for
which there is insolubility? If not, construct similar exercises and solve them until the penny
drops.

▶ It seems to be always even.

12) (i) Prove your observation in (6) in the special case a = 1, b = −r, c = −s, where r, s are
distinct primes > 2. [Hint. Quadratic reciprocity]

▶ This is the equation x2 = ry2 + sz2. Given r, s are prime numbers, the only primes where we
may not have non-trivial solutions are p = 2, r, s. By Exercise 4, there are non-trivial solutions
in Q2 if and only if at least one of r and s is 1 mod (4). As for solutions Qr we need to see if
x2 ≡ sz2(r) is solvable or equivalently whether s is a quadratic residue modulo r, and similarly
for Qs we need to see if x2 ≡ ry2(s) is solvable or equivalently whether r is a quadratic residue
modulo s. The required evenness is now a direct consequence of quadratic reciprocity law which
says: If r or s are congruent to 1 modulo 4, then: x2 ≡ r(s) is solvable if and only if x2 ≡ s(r)
is solvable, and if r and s are congruent to 3 modulo 4, then: x2 ≡ r(s) is solvable if and only if
x2 ≡ s(r) is not solvable.

(ii) [Difficult.] Prove your observation for all a, b, c ∈ Z.

▶ This is equivalent to quadratic reciprocity. A proof is given in Cassel’s book “Rational
quadratic forms” Lemma 3.4.
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