Curves - Homework 4 Solutions

Matthew Habermann, based on solutions by Dogancan Karabas, Autumn 2019

1. Check that the monodromy homomorphism M_{f} defined with respect to the function $f: S \rightarrow T$ is indeed a homomorphism

$$
\pi_{1}\left(S \backslash\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}, t\right) \rightarrow \mathfrak{S}\left(f^{-1}(t)\right)
$$

where $t_{1}, \ldots t_{n}$ are the branch values of f and $\mathfrak{S}\left(f^{-1}(t)\right)$ is the group of permutations of the finite set $f^{-1}(t)$. Show that M_{f} is transitive (since S is connected).

Solution: Let $\alpha, \beta \in \pi_{1}\left(S \backslash\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}, t\right)$, and consider the lifts $\tilde{\alpha}:[0,1] \rightarrow S \backslash\left\{f^{-1}\left(\left\{t_{1}, \ldots, t_{n}\right\}\right)\right\}$, $\tilde{\beta}:[0,1] \rightarrow S \backslash\left\{t_{1}, \ldots, t_{n}\right\}$. If we label $f^{-1}(t)=\left\{p_{1}, \ldots, p_{m}\right\}$, then by the path lifting property, these maps are unique once we have stipulated what $\tilde{\alpha}(0)$ and $\tilde{\beta}(0)$ are. There are therefore $\operatorname{deg} f=m$ different lifts of each of α and β, and we can choose lifts such that the composition of maps is possible.

To see that M_{f} is indeed a homomorphism, recall that for $\alpha \in \pi_{1}\left(S \backslash\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}, t\right)$, we have that $M_{f}(\alpha)(\tilde{\alpha}(1))=\alpha(0)$. Consider now the composition $\alpha \beta \in \pi_{1}\left(S \backslash\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}, t\right)$, and the lift $\tilde{\alpha} \tilde{\beta}:[0,1] \rightarrow S \backslash\left\{f^{-1}\left(\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}\right)\right\}$ such that $\tilde{\alpha} \tilde{\beta}(0)=\tilde{\alpha}(0)=p_{i}$. This path is then unique, and so we label its endpoint $\tilde{\alpha} \tilde{\beta}(1)=\tilde{\beta}(1)=p_{j}$. Then $M_{f}(\alpha \beta)\left(p_{j}\right)=p_{i}$. If we choose the lifts of α and β such that they are composable, then this is the same as the lift of $\alpha \beta$. Let $p_{k}=\tilde{\alpha}(1)=\tilde{\beta}(0)$. Then

$$
M_{f}(\alpha) \circ M_{f}(\beta)\left(p_{j}\right)=M_{f}\left(p_{k}\right)=p_{i}
$$

Since this is true for any lift of $\alpha \beta$, we have that $M_{f}(\alpha \beta)=M_{f}(\alpha) \circ M_{f}(\beta)$.

To see that this action is transitive, note that because S is compact and $f^{-1}\left(\left\{t_{1}, \ldots, t_{n}\right\}\right)$ is a finite set, we have that $S \backslash f^{-1}\left(\left\{t_{1}, \ldots, t_{n}\right\}\right)$ is open. Since S is connected, so is $S \backslash\left\{f^{-1}\left(\left\{t_{1}, \ldots, t_{n}\right\}\right)\right\}$, which means that it is also path connected, since it is open and connected. Therefore there are exists a path $\tilde{\gamma}:[0,1] \rightarrow S \backslash\left\{f^{-1}\left(\left\{t_{1}, \ldots, t_{n}\right\}\right)\right\}$ such that $\tilde{\gamma}(0)=p_{\ell}$ and $\tilde{\gamma}(1)=p_{r}$ for arbitrary $p_{\ell}, p_{r} \in S \backslash f^{-1}(t)$. This then projects to a path $p(\tilde{\gamma})=\gamma$ such that $\gamma(0)=\gamma(1)=t$, and so represents an element of $\pi_{1}\left(S \backslash\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}, t\right)$, and by construction we have that $M_{f}(\gamma)\left(p_{r}\right)=p_{\ell}$. Since p_{r}, p_{ℓ} were arbitrary, we see that the action is transitive.
2. Give a Belyi function for the Riemann surface associated to

$$
f(z, w)=z^{2}-w(w-1)(w-2)
$$

Solution: Let S_{f} be the compact Riemann surface associated to $f . f$ is defined over $\overline{\mathbb{Q}}$, hence by Belyi's theorem, there exists a Belyi function $g: S_{f} \rightarrow \mathbb{P}^{1}$, i.e. we have a function g such that $\operatorname{branch}(g) \subset\{0,1, \infty\}$. To construct g explicitly, first consider the projection $\hat{w}: S_{f} \rightarrow \mathbb{P}^{1}$. Then $\operatorname{branch}(\hat{w}) \subset \hat{w}\left(S_{f} \backslash S_{f}^{w}\right)$ and S_{f}^{w} is given by

$$
\begin{aligned}
S_{f}^{w} & =\left\{(z, w) \in \mathbb{C}^{2}: f(z, w)=0, f_{z}(z, w) \neq 0, \text { the coefficient of highest power of } z \text { in } f \neq 0\right\} \\
& =\left\{(z, w) \in \mathbb{C}^{2}: f(z, w)=0,2 z \neq 0\right\} \\
& =\left\{(z, w) \in \mathbb{C}^{2}: f(z, w)=0, w \notin\{0,1,2\}\right\}
\end{aligned}
$$

Hence $\hat{w}\left(S_{f} \backslash S_{f}^{w}\right)=\{0,1,2, \infty\}$ and $\operatorname{branch}(\hat{w}) \subset\{0,1,2, \infty\}$.

We want to have the branching values as a subset of $\{0,1, \infty\}$, and so we need to get rid of $2 \in$ $\operatorname{branch}(\hat{w})$. We can get rid of rational numbers between 0 and 1 using Belyi's polynomial, so we need to transform 2 using the Mobius transformation $t(w)=\frac{1}{w}$ which keeps the set $\{0,1, \infty\}$ fixed. Hence, if we define $g_{1}:=t \circ \hat{w}$, then we get $\operatorname{branch}\left(g_{1}\right) \subset\left\{0,1, \infty, \frac{1}{2}\right\}$.

Now, to get rid of $\lambda=\frac{1}{2}=\frac{m}{m+n}$ (so $m=1$ and $n=1$), we consider $g:=p_{\lambda} \circ g_{1}$ where p_{λ} is the Belyi's polynomial given by

$$
p_{\lambda}=p_{m, n}=\frac{(m+n)^{m+n}}{m^{m} n^{n}} w^{m}(1-w)^{n}=4 w(1-w) .
$$

This gives $\operatorname{branch}(g) \subset\{0,1, \infty\}$, i.e. $g: S_{f} \rightarrow \mathbb{P}^{1}$ is a Belyi function. To write explicitly, we have

$$
\begin{aligned}
g(z, w) & =p_{\lambda} \circ t \circ \hat{w}(z, w) \\
& =p_{\lambda} \circ t(w) \\
& =p_{\lambda}\left(\frac{1}{w}\right) \\
& =\frac{4}{w}\left(1-\frac{1}{w}\right) \\
& =\frac{4(w-1)}{w^{2}}
\end{aligned}
$$

3. Let S_{f} be the compact Riemann surface defined by the irreducible polynomial

$$
f(z, w)=z^{2}-w(w-1)(w-\sqrt{2})
$$

Construct a Belyi function on S_{f}.
Solution: f is defined over $\overline{\mathbb{Q}}$, hence by Belyi's theorem, we have a Belyi function $g: S_{f} \rightarrow \mathbb{P}^{1}$, i.e. we have a function g such that $\operatorname{branch}(g) \subset\{0,1, \infty\}$. To construct g explicitly, first consider the projection $\hat{w}: S_{f} \rightarrow \mathbb{P}^{1}$. Then $\operatorname{branch}(\hat{w}) \subset \hat{w}\left(S_{f} \backslash S_{f}^{w}\right)$ and S_{f}^{w} is given by

$$
\begin{aligned}
S_{f}^{w} & =\left\{(z, w) \in \mathbb{C}^{2}: f(z, w)=0, f_{z}(z, w) \neq 0, \text { the coefficient of highest power of } z \text { in } f \neq 0\right\} \\
& =\left\{(z, w) \in \mathbb{C}^{2}: f(z, w)=0,2 z \neq 0\right\} \\
& =\left\{(z, w) \in \mathbb{C}^{2}: f(z, w)=0, w \notin\{0,1, \sqrt{2}\}\right\}
\end{aligned}
$$

Hence $\hat{w}\left(S_{f} \backslash S_{f}^{w}\right)=\{0,1, \sqrt{2}, \infty\}$ and $\operatorname{branch}(\hat{w}) \subset\{0,1, \sqrt{2}, \infty\}$. Our first aim is to modify \hat{w} to make its branching values all rational. For that, we need to get rid of $\sqrt{2}$. So consider the minimal polynomial of $\sqrt{2}$ over \mathbb{Q}, which is $m(w)=w^{2}-2$. Then define $g_{1}:=m \circ \hat{w}$ and we have $\operatorname{branch}\left(g_{1}\right)=$ $m(\operatorname{branch}(\hat{w})) \cup \operatorname{branch}(m)$ where

$$
\operatorname{branch}(m)=m\left(\left\{\text { roots of } m^{\prime}\right\}\right) \cup\{\infty\}=m(\{\text { roots of } 2 w\}) \cup\{\infty\}=m(\{0\}) \cup\{\infty\}=\{-2, \infty\}
$$

Therefore we get

$$
\begin{aligned}
\operatorname{branch}\left(g_{1}\right) & =m(\operatorname{branch}(\hat{w})) \cup \operatorname{branch}(m) \\
& \subset m(\{0,1, \sqrt{2}, \infty\}) \cup\{-2, \infty\} \\
& =\{-2,-1,0, \infty\} \cup\{-2, \infty\} \\
& =\{-2,-1,0, \infty\}
\end{aligned}
$$

which is all rational. Next, we want to have $\{0,1, \infty\}$ as a subset of the branching values. For that it is easy to see that by considering $g_{2}:=s \circ g_{1}$ where s is the isomorphism $s(w)=-w$, we get

$$
\operatorname{branch}\left(g_{2}\right)=s\left(\operatorname{branch}\left(g_{1}\right)\right) \cup \operatorname{branch}(s) \subset s(\{-2 .-1,0, \infty\}) \cup \emptyset=\{0,1, \infty, 2\} .
$$

Note that we have $\operatorname{branch}(s)=\emptyset$ since s is an isomorphism. Note also that we could have produced the desired s by finding the Mobius transformation which sends $w_{1}=0$ to $0, w_{2}=-1$ to 1 , and $w_{3}=\infty$ to ∞, given by the formula

$$
s(w)=\frac{\left(w-w_{1}\right)\left(w_{2}-w_{3}\right)}{\left(w-w_{3}\right)\left(w_{2}-w_{1}\right)}=\frac{(w-0)(-1-\infty)}{(w-\infty)(-1-0)}=\frac{w \times-\infty}{-\infty \times-1}=-w .
$$

Finally, we want to have the branching values as a subset of $\{0,1, \infty\}$. For that, we need to get rid of $2 \in \operatorname{branch}\left(g_{2}\right)$. We can get rid of rational numbers between 0 and 1 using Belyi's polynomial. So, we need to transform 2 using the Mobius transformation $t(w)=\frac{1}{w}$ which keeps the set $\{0,1, \infty\}$ as the same. Hence, if we define $g_{3}:=t \circ g_{2}$, then we get $\operatorname{branch}\left(g_{3}\right) \subset\left\{0,1, \infty, \frac{1}{2}\right\}$.
Now, to get rid of $\lambda=\frac{1}{2}=\frac{m}{m+n}$ (so $m=1$ and $n=1$), we consider $g:=p_{\lambda} \circ g_{3}$ where p_{λ} is the Belyi's polynomial given by

$$
p_{\lambda}=p_{m, n}=\frac{(m+n)^{m+n}}{m^{m} n^{n}} w^{m}(1-w)^{n}=4 w(1-w) .
$$

In the end, we get $\operatorname{branch}(g) \subset\{0,1, \infty\}$, i.e. $g: S_{f} \rightarrow \mathbb{P}^{1}$ is a Belyi function. To write explicitly, we have

$$
\begin{aligned}
g(z, w) & =p_{\lambda} \circ t \circ s \circ m \circ \hat{w}(z, w) \\
& =p_{\lambda} \circ t \circ s \circ m(w) \\
& =p_{\lambda} \circ t \circ s\left(w^{2}-2\right) \\
& =p_{\lambda} \circ t\left(2-w^{2}\right) \\
& =p_{\lambda}\left(\frac{1}{2-w^{2}}\right) \\
& =4\left(\frac{1}{2-w^{2}}\right)\left(1-\frac{1}{2-w^{2}}\right) \\
& =\frac{4\left(1-w^{2}\right)}{\left(2-w^{2}\right)^{2}} .
\end{aligned}
$$

4. Consider the Fermat curve $F_{n}=\left\{[X: Y: Z] \in \mathbb{P}^{2}: X^{n}+Y^{n}=Z^{n}\right\}$. Let $f: F_{n} \rightarrow \mathbb{P}^{1}$ be given by $[X: Y: Z] \mapsto[X: Z]$. Compose this with the map $g: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ given by $z \mapsto z^{n}$. Show that as a result we get a Belyi map of degree n^{2}.

Solution: First note that f has degree n and $\operatorname{branch}(f)=\{0,1, \infty\}$. The map g has degree n and a single branch point at $z=0$. Therefore $\operatorname{deg}(g \circ f)=n^{2}$. To see that $\operatorname{branch}(g \circ f) \subseteq\{0,1, \infty\}$, note that

$$
\begin{aligned}
\operatorname{branch}(g \circ f) & =g(\operatorname{branch}(f)) \cup \operatorname{branch}(g) \\
& =\{0,1, \infty\}
\end{aligned}
$$

and so $g \circ f$ is a Belyi function of degree n^{2}.
5. Let $\sigma_{0}=(1,5,4)(2,6,3)$ and $\sigma_{1}=(1,2)(3,4)(5,6)$. Construct the corresponding surface and the dessin d'enfant on it.

Solution: First, note that $\sigma_{1} \sigma_{0}=(1,6,4,2,5,3)$. The cycles in σ_{0} are the white vertices and the cycles in σ_{1} are the black vertices. The elements in a cycle are the edges around the corresponding vertex in counter-clockwise order. The cycles in $\sigma_{1} \sigma_{0}$ are faces, and the elements in a cycle are the half of the edges of the corresponding face in clockwise order. Then we have 2 white vertices, 3 black vertices, 6 edges, and 1 face. Then by the genus formula

$$
2-2 g=\#\{\text { vertices }\}-\#\{\text { edges }\}+\#\{\text { faces }\}=(2+3)-6+1=0
$$

Hence $g=1$, which means our surface is a torus. Then we can draw the dessin d'enfant on a torus using the information above as follows:

6. Let E be the elliptic curve defined by the affine equation $z^{2}=w^{3}+1$. Show that the rational map $f: E \rightarrow \mathbb{P}^{1}$ defined by

$$
(z, w) \mapsto \frac{1+z}{2}
$$

is a Belyi map. What is its degree? Show that the dessin associated to f has a unique white vertex and a unique black vertex. Show that $f^{-1}[0,1]$ consists of 3 edges connecting these vertices. Give two permutations σ_{0}, σ_{1} describing this dessin. What is the monodromy group?
Solution: Let $g=w^{3}+\left(1-z^{2}\right)$, then $E=S_{g}$. Let $f: S_{g} \rightarrow \mathbb{P}^{1}$ be $f(z, w)=\frac{1+z}{2}$. Observe that $f=m \circ \hat{z}$ where $\hat{z}: S_{g} \rightarrow \mathbb{P}^{1}$ is the projection to z-coordinate and $m: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ with $m(z)=\frac{1+z}{2}$. So m is an isomorphism and $\operatorname{branch}(m)=\emptyset$. Then we get

$$
\operatorname{branch}(f)=m(\operatorname{branch}(\hat{z})) \cup \operatorname{branch}(m)=m(\operatorname{branch}(\hat{z}))
$$

So, we need to find $\operatorname{branch}(\hat{z})$. For that, we need to compute S_{g}^{z} :

$$
\begin{aligned}
S_{g}^{z} & =\left\{(z, w) \in \mathbb{C}^{2}: g(z, w)=0, g_{w}(z, w) \neq 0, \text { the coefficient of highest power of } w \text { in } g \neq 0\right\} \\
& =\left\{(z, w) \in \mathbb{C}^{2}: g(z, w)=0,3 w^{2} \neq 0\right\} \\
& =\left\{(z, w) \in \mathbb{C}^{2}: g(z, w)=0, w \neq 0\right\} \\
& =\left\{(z, w) \in \mathbb{C}^{2}: g(z, w)=0, z^{2} \neq 1\right\} \\
& =\left\{(z, w) \in \mathbb{C}^{2}: g(z, w)=0, z \notin\{-1,1\}\right\}
\end{aligned}
$$

Remember we have $\operatorname{branch}(\hat{z}) \subset \hat{z}\left(S_{g} \backslash S_{g}^{z}\right)$. It is clear that $\hat{z}\left(S_{g} \backslash S_{g}^{z}\right)=\{-1,1, \infty\}$, hence we have $\operatorname{branch}(\hat{z}) \subset\{-1,1, \infty\}$. Then we get

$$
\operatorname{branch}(f)=m(\operatorname{branch}(\hat{z})) \subset m(\{-1,1, \infty\})=\{0,1, \infty\}
$$

which shows that f is a Belyi map. So, we can draw the dessin associated to $f: S_{g} \rightarrow \mathbb{P}^{1}$. Observe that $\operatorname{deg} f=\operatorname{deg} \hat{z}=3$, the degree of g seen as a polynomial in $w . E=S_{g}$ is an elliptic curve, hence our surface is a torus (we will show an alternative way to deduce this in the end). To draw the dessin on it, we need to find branch points of f and their ramification indices.
The branch points for 0 are given by $f^{-1}(0)=\hat{z}^{-1}(-1)$. To compute $\left|\hat{z}^{-1}(-1)\right|$, we will consider the circle $|z+1|=\varepsilon$ for a sufficiently small $\varepsilon>0$. We can write $g(z, w)=0$ as $w^{3}+\left(1-z^{2}\right)=0$ which gives

$$
w^{3}=(z-1)(z+1)
$$

We only care about the terms with $(z+1)$ in the right hand side, hence we can consider

$$
w^{3}=(z+1)
$$

instead. If we draw the solutions of this equation in w for the circle $|z+1|=\varepsilon$, we will get $\operatorname{gcd}(3,1)=1$ disjoint circle in the complex plane, where 3 is the power of w and 1 is the power of $(z+1)$ in the equation. Hence we get $\left|\hat{z}^{-1}(-1)\right|=1$. This means $f^{-1}(0)=\hat{z}^{-1}(-1)=\{a\}$ for some a, and $v_{f}(a)=3$ since the ramification indices in $f^{-1}(0)$ must add up to $\operatorname{deg} f=3$. This shows the dessin associated to f has a unique white vertex with 3 edges attached to it.
The branch points for 1 are given by $f^{-1}(1)=\hat{z}^{-1}(1)$. To compute $\left|\hat{z}^{-1}(1)\right|$, we will consider the circle $|z-1|=\varepsilon$ for a sufficiently small $\varepsilon>0$. We can write $g(z, w)=0$ as $w^{3}=(z-1)(z+1)$ as shown above. We only care about the terms with $(z-1)$ in the right hand side, hence we can consider

$$
w^{3}=(z-1)
$$

instead. If we draw the solutions of this equation in w for the circle $|z-1|=\varepsilon$, we will $\operatorname{get} \operatorname{gcd}(3,1)=1$ disjoint circle in the complex plane, where 3 is the power of w and 1 is the power of $(z-1)$ in the equation. Hence we get $\left|\hat{z}^{-1}(1)\right|=1$. This means $f^{-1}(1)=\hat{z}^{-1}(1)=\{b\}$ for some b, and $v_{f}(b)=3$ since the ramification indices in $f^{-1}(1)$ must add up to $\operatorname{deg} f=3$. This shows the dessin associated to f has a unique black vertex with 3 edges attached to it.
The branch points for ∞ are given by $f^{-1}(\infty)=\hat{z}^{-1}(\infty)$. To compute $\left|\hat{z}^{-1}(\infty)\right|$, we will consider the circle $|z|=N$ for a sufficiently large $N>0$. We can write $g(z, w)=0$ as $w^{3}=(z-1)(z+1)$ as shown above. Since z is very large, we have $z-1 \approx z$ and $z+1 \approx z$ approximately, hence we approximately get

$$
w^{3}=z^{2}
$$

If we draw the solutions of this equation in w for the circle $|z|=N$, we will get $\operatorname{gcd}(3,2)=1$ disjoint circle in the complex plane, where 3 is the power of w and 2 is the power of z in the equation. Hence we get $\left|\hat{z}^{-1}(\infty)\right|=1$. This means $f^{-1}(\infty)=\hat{z}^{-1}(\infty)=\{c\}$ for some c, and $v_{f}(c)=3$ since the ramification indices in $f^{-1}(\infty)$ must add up to $\operatorname{deg} f=3$. This shows the dessin associated to f has a unique face with $3 \times 2=6$ edges.
We know our surface is torus, because S_{f} is an elliptic curve. But without this information, we could still deduce that S_{f} is torus. The total number of edges is $\operatorname{deg} f=3$. By the genus formula

$$
2-2 g\left(S_{f}\right)=\#\{\text { vertices }\}-\#\{\text { edges }\}+\#\{\text { faces }\}=(1+1)-3+1=0
$$

hence $g\left(S_{f}\right)=1$ which means S_{f} is a torus.
Now, we are ready to draw the dessin associated to f using the information above. We get a unique dessin (up to equivalence) on the torus, which is:

So the dessin, i.e. $f^{-1}[0,1]$, consists of 3 edges connecting the unique white and black vertices. By looking at the picture, we get $\sigma_{0}=(1,2,3)$ and $\sigma_{1}=(1,2,3)$.
Finally, the monodromy group $\operatorname{Mon}(f) \subset S_{3}$ can be calculated with the monodromy of the dessin, which is given by $<\sigma_{0}, \sigma_{1}>=<(1,2,3)>=\{\operatorname{id},(1,2,3),(1,3,2)\}$. Hence $\operatorname{Mon}(f)=\{\mathrm{id},(1,2,3),(1,3,2)\}$.
7. (i) For any $n>0$, consider the Belyi map on \mathbb{P}^{1} defined by

$$
f(z)=\frac{4 z^{n}}{\left(z^{n}+1\right)^{2}}
$$

Show that its dessin is the complete bipartite graph $K_{2, n}$.
Solution: First, note that

$$
\begin{aligned}
\operatorname{branch}(f) & \subset f\left(\left\{\text { zeroes of } f^{\prime}\right\}\right) \cup\{f(\infty)\} \\
& =f\left(\left\{\text { zeroes of } \frac{4 n z^{n-1}\left(z^{n}+1\right)^{2}-4 z^{n}\left(2 n z^{n-1}\right)\left(z^{n}+1\right)}{\left(z^{n}+1\right)^{4}}\right\}\right) \cup\{0\} \\
& =f\left(\left\{\text { zeroes of } 4 n z^{n-1}\left(z^{n}+1\right)\left(1-z^{n}\right)\right\}\right) \cup\{0\} \\
& =f\left(\{0\} \cup\left\{z: z^{n}=1\right\} \cup\left\{z: z^{n}=-1\right\}\right) \cup\{0\} \\
& =\{0,1, \infty\} .
\end{aligned}
$$

This means f is a Belyi function. So, we can draw the dessin associated to $f: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$. Observe that $\operatorname{deg} f=2 n$, the highest power of z in $f(z)$. Our surface is \mathbb{P}^{1}, i.e. sphere. To draw the dessin on it, we need to find branch points of f and their ramification indices.
Since f is a rational function, we know that the only branch points with ramification index greater than 1 are the zeroes of f^{\prime}, which are given by the set $\{0\} \cup\left\{z: z^{n}=1\right\} \cup\left\{z: z^{n}=-1\right\}$, and also we may have ∞, so they are $\left\{0, a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}, \infty\right\}$ where a_{i} are the solutions of $z^{n}=1$ and b_{i} are the solutions of $z^{n}=-1$ for $i=1, \ldots, n$. Using this information, we get the following data:
The branch points for 0 are given by $f^{-1}(0)=\{0, \infty\}$ and their ramification indices are $v_{f}(0)=n$ (since z has the power n in the nominator of $f(z)$) and $v_{f}(\infty)=n$ (since around $\infty, z^{n}+1 \approx z^{n}$ and $f(z) \approx \frac{4 z^{n}}{\left(z^{n}\right)^{2}}=\frac{4}{z^{n}}$, where z has the power n in the denominator).

We know $\left\{a_{1}, \ldots, a_{n}\right\} \subset f^{-1}(1)$ and $v_{f}\left(a_{i}\right)>1$ for $i=1, \ldots, n$. Also, we know that the sum of the ramification indices in $f^{-1}(1)$ add up to $\operatorname{deg} f=2 n$. Therefore we must have $v_{f}\left(a_{i}\right)=2$ for all $i=1, \ldots, n$ and the branch points for 1 are given by $f^{-1}(1)=\left\{a_{1}, \ldots, a_{n}\right\}$.
The branch points for ∞ are given by $f^{-1}(\infty)=\left\{b_{1}, \ldots, b_{n}\right\}$ and we know $v_{f}\left(b_{i}\right)>1$ for $i=1, \ldots, n$. Since the sum of the ramification indices in $f^{-1}(\infty)$ add up to $\operatorname{deg} f=2 n$, we must have $v_{f}\left(b_{i}\right)=2$ for $i=1, \ldots, n$.

Now, we are ready to draw the dessin associated to f. The branch points for 0 correspond to the white points, and the ramification index of each branch point is the number of edges adjacent to the corresponding vertex. The branch points for 1 correspond to the black points, and the ramification index of each branch point is the number of edges adjacent to the corresponding vertex. The branch points for ∞ correspond to the faces, and the ramification index of each branch point is half the number of edges of the corresponding face. The total number of edges is $\operatorname{deg} f=2 n$. Then we get a unique dessin (up to equivalence) on the sphere, which is:

(ii) For any $n>0$, consider the Belyi map on \mathbb{P}^{1} defined by

$$
f(z)=\frac{\left(z^{n}+1\right)^{2}}{4 z^{n}}
$$

Show that its dessin is the circular graph $C_{2 n}$ with $2 n$ vertices.
Solution: First, note that

$$
\begin{aligned}
\operatorname{branch}(f) & \subset f\left(\left\{\text { zeroes of } f^{\prime}\right\}\right) \cup\{f(\infty)\} \\
& =f\left(\left\{\text { zeroes of } \frac{4 z^{n}\left(2 n z^{n-1}\right)\left(z^{n}+1\right)-4 n z^{n-1}\left(z^{n}+1\right)^{2}}{\left(4 z^{n}\right)^{2}}\right\}\right) \cup\{\infty\} \\
& =f\left(\left\{\text { zeroes of } 4 n z^{n-1}\left(z^{n}+1\right)\left(z^{n}-1\right)\right\}\right) \cup\{\infty\} \\
& =f\left(\{0\} \cup\left\{z: z^{n}=1\right\} \cup\left\{z: z^{n}=-1\right\}\right) \cup\{\infty\} \\
& =\{0,1, \infty\} .
\end{aligned}
$$

This means f is a Belyi function. So, we can draw the dessin associated to $f: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$. Observe that $\operatorname{deg} f=2 n$, the highest power of z in $f(z)$. Our surface is \mathbb{P}^{1}, i.e. sphere. To draw the dessin on it, we need to find branch points of f and their ramification indices.
Since f is a rational function, we know that the only branch points with ramification index greater than 1 are the zeroes of f^{\prime}, which are given by the set $\{0\} \cup\left\{z: z^{n}=1\right\} \cup\left\{z: z^{n}=-1\right\}$, and also we may have ∞, so they are $\left\{0, a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}, \infty\right\}$ where a_{i} are the solutions of $z^{n}=1$ and b_{i} are the solutions of $z^{n}=-1$ for $i=1, \ldots, n$. Using this information, we get the following data:
The branch points for 0 are given by $f^{-1}(0)=\left\{b_{1}, \ldots, b_{n}\right\}$ and we know $v_{f}\left(b_{i}\right)>1$ for $i=1, \ldots, n$. Since the sum of the ramification indices in $f^{-1}(0)$ add up to $\operatorname{deg} f=2 n$, we must have $v_{f}\left(b_{i}\right)=2$ for $i=1, \ldots, n$.
We know $\left\{a_{1}, \ldots, a_{n}\right\} \subset f^{-1}(1)$ and $v_{f}\left(a_{i}\right)>1$ for $i=1, \ldots, n$. Also, we know that the sum of the ramification indices in $f^{-1}(1)$ add up to $\operatorname{deg} f=2 n$. Therefore we must have $v_{f}\left(a_{i}\right)=2$ for all $i=1, \ldots, n$ and the branch points for 1 are given by $f^{-1}(1)=\left\{a_{1}, \ldots, a_{n}\right\}$.

The branch points for ∞ are given by $f^{-1}(\infty)=\{0, \infty\}$ and their ramification indices are $v_{f}(0)=n$ (since 0 is a pole of order n in $f(z)$) and $v_{f}(\infty)=n$ (since around $\infty, z^{n}+1 \approx z^{n}$ and $f(z) \approx \frac{\left(z^{n}\right)^{2}}{4 z^{n}}=\frac{z^{n}}{4}$, where z has the power n in the nominator).
Now, we are ready to draw the dessin associated to f. The branch points for 0 correspond to the white points, and the ramification index of each branch point is the number of edges adjacent to the corresponding vertex. The branch points for 1 correspond to the black points, and the ramification index of each branch point is the number of edges adjacent to the corresponding vertex. The branch points for ∞ correspond to the faces, and the ramification index of each branch point is half the number of edges of the corresponding face. The total number of edges is $\operatorname{deg} f=2 n$. Then we get a unique dessin (up to equivalence) on the sphere, which is:

