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1. Check that the monodromy homomorphism Mf defined with respect to the function f : S → T is
indeed a homomorphism

π1(S \ {t1, t2, . . . , tn}, t)→ S(f−1(t)),

where t1, . . . tn are the branch values of f and S(f−1(t)) is the group of permutations of the finite set
f−1(t). Show that Mf is transitive (since S is connected).

Solution: Let α, β ∈ π1(S\{t1, t2, . . . , tn}, t), and consider the lifts α̃ : [0, 1]→ S\{f−1({t1, . . . , tn})},
β̃ : [0, 1]→ S \ {t1, . . . , tn}. If we label f−1(t) = {p1, . . . , pm}, then by the path lifting property, these
maps are unique once we have stipulated what α̃(0) and β̃(0) are. There are therefore deg f = m
different lifts of each of α and β, and we can choose lifts such that the composition of maps is possible.

To see that Mf is indeed a homomorphism, recall that for α ∈ π1(S \ {t1, t2, . . . , tn}, t), we have
that Mf (α)(α̃(1)) = α(0). Consider now the composition αβ ∈ π1(S \ {t1, t2, . . . , tn}, t), and the lift

α̃β̃ : [0, 1] → S \ {f−1({t1, t2, . . . , tn})} such that α̃β̃(0) = α̃(0) = pi. This path is then unique, and
so we label its endpoint α̃β̃(1) = β̃(1) = pj . Then Mf (αβ)(pj) = pi. If we choose the lifts of α and β

such that they are composable, then this is the same as the lift of αβ. Let pk = α̃(1) = β̃(0). Then

Mf (α) ◦Mf (β)(pj) = Mf (pk) = pi

Since this is true for any lift of αβ, we have that Mf (αβ) = Mf (α) ◦Mf (β).

To see that this action is transitive, note that because S is compact and f−1({t1, . . . , tn}) is a finite set,
we have that S \ f−1({t1, . . . , tn}) is open. Since S is connected, so is S \ {f−1({t1, . . . , tn})}, which
means that it is also path connected, since it is open and connected. Therefore there are exists a path
γ̃ : [0, 1]→ S \ {f−1({t1, . . . , tn})} such that γ̃(0) = p` and γ̃(1) = pr for arbitrary p`, pr ∈ S \ f−1(t).
This then projects to a path p(γ̃) = γ such that γ(0) = γ(1) = t, and so represents an element of
π1(S\{t1, t2, . . . , tn}, t), and by construction we have that Mf (γ)(pr) = p`. Since pr, p` were arbitrary,
we see that the action is transitive.

2. Give a Belyi function for the Riemann surface associated to

f(z, w) = z2 − w(w − 1)(w − 2).

Solution: Let Sf be the compact Riemann surface associated to f . f is defined over Q, hence by
Belyi’s theorem, there exists a Belyi function g : Sf → P1, i.e. we have a function g such that
branch(g) ⊂ {0, 1,∞}. To construct g explicitly, first consider the projection ŵ : Sf → P1. Then
branch(ŵ) ⊂ ŵ(Sf \ Swf ) and Swf is given by

Swf = {(z, w) ∈ C2 : f(z, w) = 0, fz(z, w) 6= 0, the coefficient of highest power of z in f 6= 0}
= {(z, w) ∈ C2 : f(z, w) = 0, 2z 6= 0}
= {(z, w) ∈ C2 : f(z, w) = 0, w /∈ {0, 1, 2}} .
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Hence ŵ(Sf \ Swf ) = {0, 1, 2,∞} and branch(ŵ) ⊂ {0, 1, 2,∞}.

We want to have the branching values as a subset of {0, 1,∞}, and so we need to get rid of 2 ∈
branch(ŵ). We can get rid of rational numbers between 0 and 1 using Belyi’s polynomial, so we need
to transform 2 using the Mobius transformation t(w) = 1

w which keeps the set {0, 1,∞} fixed. Hence,
if we define g1 := t ◦ ŵ, then we get branch(g1) ⊂ {0, 1,∞, 12}.

Now, to get rid of λ = 1
2 = m

m+n (so m = 1 and n = 1), we consider g := pλ ◦ g1 where pλ is the Belyi’s
polynomial given by

pλ = pm,n =
(m+ n)m+n

mmnn
wm(1− w)n = 4w(1− w) .

This gives branch(g) ⊂ {0, 1,∞}, i.e. g : Sf → P1 is a Belyi function. To write explicitly, we have

g(z, w) = pλ ◦ t ◦ ŵ(z, w)

= pλ ◦ t(w)

= pλ

(
1

w

)
=

4

w

(
1− 1

w

)
=

4(w − 1)

w2

3. Let Sf be the compact Riemann surface defined by the irreducible polynomial

f(z, w) = z2 − w(w − 1)(w −
√

2)

Construct a Belyi function on Sf .

Solution: f is defined over Q, hence by Belyi’s theorem, we have a Belyi function g : Sf → P1, i.e.
we have a function g such that branch(g) ⊂ {0, 1,∞}. To construct g explicitly, first consider the
projection ŵ : Sf → P1. Then branch(ŵ) ⊂ ŵ(Sf \ Swf ) and Swf is given by

Swf = {(z, w) ∈ C2 : f(z, w) = 0, fz(z, w) 6= 0, the coefficient of highest power of z in f 6= 0}
= {(z, w) ∈ C2 : f(z, w) = 0, 2z 6= 0}

= {(z, w) ∈ C2 : f(z, w) = 0, w /∈ {0, 1,
√

2}} .

Hence ŵ(Sf \ Swf ) = {0, 1,
√

2,∞} and branch(ŵ) ⊂ {0, 1,
√

2,∞}. Our first aim is to modify ŵ to

make its branching values all rational. For that, we need to get rid of
√

2. So consider the minimal
polynomial of

√
2 over Q, which is m(w) = w2− 2. Then define g1 := m ◦ ŵ and we have branch(g1) =

m(branch(ŵ)) ∪ branch(m) where

branch(m) = m({roots of m′}) ∪ {∞} = m({roots of 2w}) ∪ {∞} = m({0}) ∪ {∞} = {−2,∞} .

Therefore we get

branch(g1) = m(branch(ŵ)) ∪ branch(m)

⊂ m({0, 1,
√

2,∞}) ∪ {−2,∞}
= {−2,−1, 0,∞} ∪ {−2,∞}
= {−2,−1, 0,∞}
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which is all rational. Next, we want to have {0, 1,∞} as a subset of the branching values. For that it
is easy to see that by considering g2 := s ◦ g1 where s is the isomorphism s(w) = −w, we get

branch(g2) = s(branch(g1)) ∪ branch(s) ⊂ s({−2.− 1, 0,∞}) ∪ ∅ = {0, 1,∞, 2} .

Note that we have branch(s) = ∅ since s is an isomorphism. Note also that we could have produced the
desired s by finding the Mobius transformation which sends w1 = 0 to 0, w2 = −1 to 1, and w3 = ∞
to ∞, given by the formula

s(w) =
(w − w1)(w2 − w3)

(w − w3)(w2 − w1)
=

(w − 0)(−1−∞)

(w −∞)(−1− 0)
=

w ×−∞
−∞×−1

= −w .

Finally, we want to have the branching values as a subset of {0, 1,∞}. For that, we need to get rid of
2 ∈ branch(g2). We can get rid of rational numbers between 0 and 1 using Belyi’s polynomial. So, we
need to transform 2 using the Mobius transformation t(w) = 1

w which keeps the set {0, 1,∞} as the
same. Hence, if we define g3 := t ◦ g2, then we get branch(g3) ⊂ {0, 1,∞, 12}.
Now, to get rid of λ = 1

2 = m
m+n (so m = 1 and n = 1), we consider g := pλ ◦ g3 where pλ is the Belyi’s

polynomial given by

pλ = pm,n =
(m+ n)m+n

mmnn
wm(1− w)n = 4w(1− w) .

In the end, we get branch(g) ⊂ {0, 1,∞}, i.e. g : Sf → P1 is a Belyi function. To write explicitly, we
have

g(z, w) = pλ ◦ t ◦ s ◦m ◦ ŵ(z, w)

= pλ ◦ t ◦ s ◦m(w)

= pλ ◦ t ◦ s(w2 − 2)

= pλ ◦ t(2− w2)

= pλ

(
1

2− w2

)
= 4

(
1

2− w2

)(
1− 1

2− w2

)
=

4(1− w2)

(2− w2)2
.

4. Consider the Fermat curve Fn = {[X : Y : Z] ∈ P2 : Xn + Y n = Zn}. Let f : Fn → P1 be given
by [X : Y : Z] 7→ [X : Z]. Compose this with the map g : P1 → P1 given by z 7→ zn. Show that as a
result we get a Belyi map of degree n2.

Solution: First note that f has degree n and branch(f) = {0, 1,∞}. The map g has degree n and a
single branch point at z = 0. Therefore deg(g ◦ f) = n2. To see that branch(g ◦ f) ⊆ {0, 1,∞}, note
that

branch(g ◦ f) = g(branch(f)) ∪ branch(g)

= {0, 1,∞},

and so g ◦ f is a Belyi function of degree n2.

5. Let σ0 = (1, 5, 4)(2, 6, 3) and σ1 = (1, 2)(3, 4)(5, 6). Construct the corresponding surface and the dessin
d’enfant on it.
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Solution: First, note that σ1σ0 = (1, 6, 4, 2, 5, 3). The cycles in σ0 are the white vertices and the
cycles in σ1 are the black vertices. The elements in a cycle are the edges around the corresponding
vertex in counter-clockwise order. The cycles in σ1σ0 are faces, and the elements in a cycle are the
half of the edges of the corresponding face in clockwise order. Then we have 2 white vertices, 3 black
vertices, 6 edges, and 1 face. Then by the genus formula

2− 2g = #{vertices} −#{edges}+ #{faces} = (2 + 3)− 6 + 1 = 0 .

Hence g = 1, which means our surface is a torus. Then we can draw the dessin d’enfant on a torus
using the information above as follows:

1 2

5

4

6
3

3

6

6. Let E be the elliptic curve defined by the affine equation z2 = w3 + 1. Show that the rational map
f : E → P1 defined by

(z, w) 7→ 1 + z

2

is a Belyi map. What is its degree? Show that the dessin associated to f has a unique white vertex
and a unique black vertex. Show that f−1[0, 1] consists of 3 edges connecting these vertices. Give two
permutations σ0, σ1 describing this dessin. What is the monodromy group?

Solution: Let g = w3 + (1 − z2), then E = Sg. Let f : Sg → P1 be f(z, w) = 1+z
2 . Observe that

f = m ◦ ẑ where ẑ : Sg → P1 is the projection to z-coordinate and m : P1 → P1 with m(z) = 1+z
2 . So

m is an isomorphism and branch(m) = ∅. Then we get

branch(f) = m(branch(ẑ)) ∪ branch(m) = m(branch(ẑ)) .

So, we need to find branch(ẑ). For that, we need to compute Szg :

Szg = {(z, w) ∈ C2 : g(z, w) = 0, gw(z, w) 6= 0, the coefficient of highest power of w in g 6= 0}
= {(z, w) ∈ C2 : g(z, w) = 0, 3w2 6= 0}
= {(z, w) ∈ C2 : g(z, w) = 0, w 6= 0}
= {(z, w) ∈ C2 : g(z, w) = 0, z2 6= 1}
= {(z, w) ∈ C2 : g(z, w) = 0, z /∈ {−1, 1}}

Remember we have branch(ẑ) ⊂ ẑ(Sg \ Szg ). It is clear that ẑ(Sg \ Szg ) = {−1, 1,∞}, hence we have
branch(ẑ) ⊂ {−1, 1,∞}. Then we get

branch(f) = m(branch(ẑ)) ⊂ m({−1, 1,∞}) = {0, 1,∞}
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which shows that f is a Belyi map. So, we can draw the dessin associated to f : Sg → P1. Observe
that deg f = deg ẑ = 3, the degree of g seen as a polynomial in w. E = Sg is an elliptic curve, hence
our surface is a torus (we will show an alternative way to deduce this in the end). To draw the dessin
on it, we need to find branch points of f and their ramification indices.

The branch points for 0 are given by f−1(0) = ẑ−1(−1). To compute |ẑ−1(−1)|, we will consider the
circle |z + 1| = ε for a sufficiently small ε > 0. We can write g(z, w) = 0 as w3 + (1 − z2) = 0 which
gives

w3 = (z − 1)(z + 1)

We only care about the terms with (z + 1) in the right hand side, hence we can consider

w3 = (z + 1)

instead. If we draw the solutions of this equation in w for the circle |z+1| = ε, we will get gcd(3, 1) = 1
disjoint circle in the complex plane, where 3 is the power of w and 1 is the power of (z + 1) in the
equation. Hence we get |ẑ−1(−1)| = 1. This means f−1(0) = ẑ−1(−1) = {a} for some a, and vf (a) = 3
since the ramification indices in f−1(0) must add up to deg f = 3. This shows the dessin associated to
f has a unique white vertex with 3 edges attached to it.

The branch points for 1 are given by f−1(1) = ẑ−1(1). To compute |ẑ−1(1)|, we will consider the circle
|z − 1| = ε for a sufficiently small ε > 0. We can write g(z, w) = 0 as w3 = (z − 1)(z + 1) as shown
above. We only care about the terms with (z − 1) in the right hand side, hence we can consider

w3 = (z − 1)

instead. If we draw the solutions of this equation in w for the circle |z−1| = ε, we will get gcd(3, 1) = 1
disjoint circle in the complex plane, where 3 is the power of w and 1 is the power of (z − 1) in the
equation. Hence we get |ẑ−1(1)| = 1. This means f−1(1) = ẑ−1(1) = {b} for some b, and vf (b) = 3
since the ramification indices in f−1(1) must add up to deg f = 3. This shows the dessin associated to
f has a unique black vertex with 3 edges attached to it.

The branch points for ∞ are given by f−1(∞) = ẑ−1(∞). To compute |ẑ−1(∞)|, we will consider the
circle |z| = N for a sufficiently large N > 0. We can write g(z, w) = 0 as w3 = (z− 1)(z+ 1) as shown
above. Since z is very large, we have z − 1 ≈ z and z + 1 ≈ z approximately, hence we approximately
get

w3 = z2 .

If we draw the solutions of this equation in w for the circle |z| = N , we will get gcd(3, 2) = 1 disjoint
circle in the complex plane, where 3 is the power of w and 2 is the power of z in the equation. Hence
we get |ẑ−1(∞)| = 1. This means f−1(∞) = ẑ−1(∞) = {c} for some c, and vf (c) = 3 since the
ramification indices in f−1(∞) must add up to deg f = 3. This shows the dessin associated to f has a
unique face with 3× 2 = 6 edges.

We know our surface is torus, because Sf is an elliptic curve. But without this information, we could
still deduce that Sf is torus. The total number of edges is deg f = 3. By the genus formula

2− 2g(Sf ) = #{vertices} −#{edges}+ #{faces} = (1 + 1)− 3 + 1 = 0

hence g(Sf ) = 1 which means Sf is a torus.

Now, we are ready to draw the dessin associated to f using the information above. We get a unique
dessin (up to equivalence) on the torus, which is:
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1

2

3

2

3

So the dessin, i.e. f−1[0, 1], consists of 3 edges connecting the unique white and black vertices. By
looking at the picture, we get σ0 = (1, 2, 3) and σ1 = (1, 2, 3).

Finally, the monodromy group Mon(f) ⊂ S3 can be calculated with the monodromy of the dessin, which
is given by < σ0, σ1 >=< (1, 2, 3) >= {id, (1, 2, 3), (1, 3, 2)}. Hence Mon(f) = {id, (1, 2, 3), (1, 3, 2)}.

7. (i) For any n > 0, consider the Belyi map on P1 defined by

f(z) =
4zn

(zn + 1)2

Show that its dessin is the complete bipartite graph K2,n.

Solution: First, note that

branch(f) ⊂ f({zeroes of f ′}) ∪ {f(∞)}

= f

({
zeroes of

4nzn−1(zn + 1)2 − 4zn(2nzn−1)(zn + 1)

(zn + 1)4

})
∪ {0}

= f({zeroes of 4nzn−1(zn + 1)(1− zn)}) ∪ {0}
= f({0} ∪ {z : zn = 1} ∪ {z : zn = −1}) ∪ {0}
= {0, 1,∞} .

This means f is a Belyi function. So, we can draw the dessin associated to f : P1 → P1. Observe that
deg f = 2n, the highest power of z in f(z). Our surface is P1, i.e. sphere. To draw the dessin on it, we
need to find branch points of f and their ramification indices.

Since f is a rational function, we know that the only branch points with ramification index greater
than 1 are the zeroes of f ′, which are given by the set {0} ∪ {z : zn = 1} ∪ {z : zn = −1}, and also we
may have ∞, so they are {0, a1, . . . , an, b1, . . . , bn,∞} where ai are the solutions of zn = 1 and bi are
the solutions of zn = −1 for i = 1, . . . , n. Using this information, we get the following data:

The branch points for 0 are given by f−1(0) = {0,∞} and their ramification indices are vf (0) = n
(since z has the power n in the nominator of f(z)) and vf (∞) = n (since around ∞, zn + 1 ≈ zn and
f(z) ≈ 4zn

(zn)2 = 4
zn , where z has the power n in the denominator).

We know {a1, . . . , an} ⊂ f−1(1) and vf (ai) > 1 for i = 1, . . . , n. Also, we know that the sum of
the ramification indices in f−1(1) add up to deg f = 2n. Therefore we must have vf (ai) = 2 for all
i = 1, . . . , n and the branch points for 1 are given by f−1(1) = {a1, . . . , an}.
The branch points for ∞ are given by f−1(∞) = {b1, . . . , bn} and we know vf (bi) > 1 for i = 1, . . . , n.
Since the sum of the ramification indices in f−1(∞) add up to deg f = 2n, we must have vf (bi) = 2
for i = 1, . . . , n.
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Now, we are ready to draw the dessin associated to f . The branch points for 0 correspond to the
white points, and the ramification index of each branch point is the number of edges adjacent to the
corresponding vertex. The branch points for 1 correspond to the black points, and the ramification
index of each branch point is the number of edges adjacent to the corresponding vertex. The branch
points for∞ correspond to the faces, and the ramification index of each branch point is half the number
of edges of the corresponding face. The total number of edges is deg f = 2n. Then we get a unique
dessin (up to equivalence) on the sphere, which is:

n edges

n edges

(ii) For any n > 0, consider the Belyi map on P1 defined by

f(z) =
(zn + 1)2

4zn

Show that its dessin is the circular graph C2n with 2n vertices.

Solution: First, note that

branch(f) ⊂ f({zeroes of f ′}) ∪ {f(∞)}

= f

({
zeroes of

4zn(2nzn−1)(zn + 1)− 4nzn−1(zn + 1)2

(4zn)2

})
∪ {∞}

= f({zeroes of 4nzn−1(zn + 1)(zn − 1)}) ∪ {∞}
= f({0} ∪ {z : zn = 1} ∪ {z : zn = −1}) ∪ {∞}
= {0, 1,∞} .

This means f is a Belyi function. So, we can draw the dessin associated to f : P1 → P1. Observe that
deg f = 2n, the highest power of z in f(z). Our surface is P1, i.e. sphere. To draw the dessin on it, we
need to find branch points of f and their ramification indices.

Since f is a rational function, we know that the only branch points with ramification index greater
than 1 are the zeroes of f ′, which are given by the set {0} ∪ {z : zn = 1} ∪ {z : zn = −1}, and also we
may have ∞, so they are {0, a1, . . . , an, b1, . . . , bn,∞} where ai are the solutions of zn = 1 and bi are
the solutions of zn = −1 for i = 1, . . . , n. Using this information, we get the following data:

The branch points for 0 are given by f−1(0) = {b1, . . . , bn} and we know vf (bi) > 1 for i = 1, . . . , n.
Since the sum of the ramification indices in f−1(0) add up to deg f = 2n, we must have vf (bi) = 2 for
i = 1, . . . , n.

We know {a1, . . . , an} ⊂ f−1(1) and vf (ai) > 1 for i = 1, . . . , n. Also, we know that the sum of
the ramification indices in f−1(1) add up to deg f = 2n. Therefore we must have vf (ai) = 2 for all
i = 1, . . . , n and the branch points for 1 are given by f−1(1) = {a1, . . . , an}.
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The branch points for ∞ are given by f−1(∞) = {0,∞} and their ramification indices are vf (0) = n

(since 0 is a pole of order n in f(z)) and vf (∞) = n (since around∞, zn+1 ≈ zn and f(z) ≈ (zn)2

4zn = zn

4 ,
where z has the power n in the nominator).

Now, we are ready to draw the dessin associated to f . The branch points for 0 correspond to the
white points, and the ramification index of each branch point is the number of edges adjacent to the
corresponding vertex. The branch points for 1 correspond to the black points, and the ramification
index of each branch point is the number of edges adjacent to the corresponding vertex. The branch
points for∞ correspond to the faces, and the ramification index of each branch point is half the number
of edges of the corresponding face. The total number of edges is deg f = 2n. Then we get a unique
dessin (up to equivalence) on the sphere, which is:

2n edges
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