Curves - Homework 4 Solutions
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1. Check that the monodromy homomorphism M; defined with respect to the function f : S — T is
indeed a homomorphism

T (S\ {t1,ta, ... ta},t) = S(F7H(1)),

where t1,...t, are the branch values of f and &(f~1(t)) is the group of permutations of the finite set
f71(t). Show that M; is transitive (since S is connected).

Solution: Let a, 8 € m1(S\{t1,%2,...,tn},t), and consider the lifts & : [0,1] = S\{f ™ ({t1,...,tn})},
B:[0,1] = S\ {t1,...,tn}. If we label f~1(¢) = {p1,...,pm}, then by the path lifting property, these
maps are unique once we have stipulated what &(0) and 5(0) are. There are therefore deg f = m

different lifts of each of o and /3, and we can choose lifts such that the composition of maps is possible.

To see that My is indeed a homomorphism, recall that for a € m (S \ {t1,t2,...,t,},t), we have
that My(a)(a(1)) = «(0). Consider now the composition af € w1 (S \ {t1,t2,...,tn},t), and the lift
aB:[0,1] = S\ {f~'({t1,t2,....tn})} such that aB(0) = a(0) = p;. This path is then unique, and
so we label its endpoint &3(1) = 8(1) = p;. Then M;(af)(p;) = pi- If we choose the lifts of o and S
such that they are composable, then this is the same as the lift of 8. Let pp = a(1) = B(O) Then

Mj(a) o My(B)(p;) = My(pk) = pi
Since this is true for any lift of a8, we have that My(af) = Ms(a) o M¢(5).

To see that this action is transitive, note that because S is compact and f~({t1,...,t,}) is a finite set,
we have that S\ f~'({t1,...,t,}) is open. Since S is connected, so is S\ {f~*({t1,...,tn})}, which
means that it is also path connected, since it is open and connected. Therefore there are exists a path

5 :00,1] = S\ {f~*({t1,...,tn})} such that 5(0) = p, and 5(1) = p, for arbitrary ps,p,. € S\ f~1(t).
This then projects to a path p(¥) = 7 such that v(0) = (1) = ¢, and so represents an element of
w1 (S\{t1,%2,...,tn},t), and by construction we have that M;(y)(p,) = pe. Since p,, p; were arbitrary,
we see that the action is transitive.

2. Give a Belyi function for the Riemann surface associated to

flzyw) =22 —w(w — 1) (w — 2).

Solution: Let S; be the compact Riemann surface associated to f. f is defined over Q, hence by
Belyi’s theorem, there exists a Belyi function g : Sy — P!, i.e. we have a function g such that
branch(g) C {0,1,00}. To construct g explicitly, first consider the projection w: Sy — P!. Then
branch(w) C w(Sy \ S¥) and S} is given by
Sy ={(z,w) € C?: f(z,w) =0, f.(z,w) # 0, the coefficient of highest power of z in f # 0}
= {(z,w) € C*: f(z,w) = 0,22 # 0}
= {(z,w) € C*: f(z,w) = 0,w ¢ {0,1,2}} .



Hence w(Sy \ S¥) = {0,1,2, 00} and branch(w) C {0,1,2,00}.

We want to have the branching values as a subset of {0,1,00}, and so we need to get rid of 2 €
branch(@w). We can get rid of rational numbers between 0 and 1 using Belyi’s polynomial, so we need
to transform 2 using the Mobius transformation t(w) = % which keeps the set {0, 1,00} fixed. Hence,
if we define g; :=t o @, then we get branch(g;) C {0, 1, oo, %}

Now, to get rid of A = % = e (som =1and n =1), we consider g := py o g; where p, is the Belyi’s
polynomial given by
m+n
= P = TET g ) — a1 - w) |

mmn™
This gives branch(g) C {0,1,00}, i.e. g: Sy — P! is a Belyi function. To write explicitly, we have

g(z,w) =pyotow(z,w)
=prot(w)

n(})

. Let Sy be the compact Riemann surface defined by the irreducible polynomial
flz,w) =22 —w(w — 1)(w — V2)

Construct a Belyi function on Sy.

Solution: f is defined over Q, hence by Belyi’s theorem, we have a Belyi function g: Sy — P, i.e.
we have a function g such that branch(g) C {0,1,00}. To construct g explicitly, first consider the
projection w: Sy — P'. Then branch(w) C @(Sy \ S¥) and S¥ is given by

SY ={(z,w) € C?: f(z,w) =0, f.(z,w) # 0, the coefficient of highest power of z in f # 0}
={(z,w) € C*: f(z,w) = 0,2z # 0}
= {(z,w) € C%: f(z,w) = 0,w ¢ {0,1,V2}} .

Hence @(Sy \ S¢) = {0,1,v/2,00} and branch(@) C {0,1,v/2,00}. Our first aim is to modify  to
make its branching values all rational. For that, we need to get rid of v/2. So consider the minimal
polynomial of v/2 over Q, which is m(w) = w? — 2. Then define g; := m o1 and we have branch(g;) =
m(branch(w)) U branch(m) where

branch(m) = m({roots of m’}) U {oc} = m({roots of 2w}) U{oc} = m({0}) U {cc} = {2,000} .
Therefore we get

branch(g;) = m(branch(w)) U branch(m)
c m({0,1,v2,00}) U{-2, 00}
,—1,0,00} U{=2,00}

2
2,-1,0, 00}

{_
{_



which is all rational. Next, we want to have {0, 1,00} as a subset of the branching values. For that it
is easy to see that by considering go := s o g1 where s is the isomorphism s(w) = —w, we get

branch(ge) = s(branch(g;)) Ubranch(s) C s({—2. —1,0,00}) UD = {0,1, 00,2} .

Note that we have branch(s) = ) since s is an isomorphism. Note also that we could have produced the
desired s by finding the Mobius transformation which sends w; = 0 to 0, wo = —1 to 1, and w3 = oo
to 0o, given by the formula

(w—wy)(wg —w3z) (w—0)(-1—00) wx—00

s(w) = (W —ws)(ws —w1)  (w—00)(—1-0) —oox—1 -

Finally, we want to have the branching values as a subset of {0, 1, 00}. For that, we need to get rid of
2 € branch(g2). We can get rid of rational numbers between 0 and 1 using Belyi’s polynomial. So, we
need to transform 2 using the Mobius transformation ¢(w) = L which keeps the set {0,1,00} as the
same. Hence, if we define g3 := t o g9, then we get branch(gs) C {0, 1, oo, %}

Now, to get rid of A = § = i (som =1 and n = 1), we consider g := py o g3 where p is the Belyi’s
polynomial given by
m—+n
Py = Pmn = (m + n) wm(l - w)n = 4'[1)(1 — U/) .

mmn’
In the end, we get branch(g) C {0,1,00}, i.e. g: S§ — P! is a Belyi function. To write explicitly, we
have

g(z,w) =pyotosomo(z,w)
=pyrotosom(w)
=pyrotos(w® —2)
=prot(2—w?)

= (5=w)
(o) (o)

4(1 — w?)

SR

. Consider the Fermat curve F,, = {[X : Y : Z] € P? : X" +Y" = Z"}. Let f : F,, — P! be given
by [X : Y : Z] — [X : Z]. Compose this with the map g : P — P! given by 2z — 2™. Show that as a

result we get a Belyi map of degree n2.

Solution: First note that f has degree n and branch(f) = {0, 1,00}. The map g has degree n and a

single branch point at z = 0. Therefore deg(g o f) = n?. To see that branch(go f) C {0,1,cc}, note

that

branch(g o f) = g(branch(f)) U branch(g)
= {0,1, o0},

and so g o f is a Belyi function of degree n?.

. Let o9 = (1,5,4)(2,6,3) and o1 = (1,2)(3,4)(5,6). Construct the corresponding surface and the dessin
d’enfant on it.



Solution: First, note that o109 = (1,6,4,2,5,3). The cycles in oy are the white vertices and the
cycles in o; are the black vertices. The elements in a cycle are the edges around the corresponding
vertex in counter-clockwise order. The cycles in oi0( are faces, and the elements in a cycle are the
half of the edges of the corresponding face in clockwise order. Then we have 2 white vertices, 3 black
vertices, 6 edges, and 1 face. Then by the genus formula

2 — 2g = #{vertices} — #{edges} + #{faces} = (2+3)—-6+1=0.

Hence g = 1, which means our surface is a torus. Then we can draw the dessin d’enfant on a torus
using the information above as follows:

. Let E be the elliptic curve defined by the affine equation z?> = w? 4 1. Show that the rational map
f: E — P! defined by
142

2

is a Belyi map. What is its degree? Show that the dessin associated to f has a unique white vertex
and a unique black vertex. Show that f~1[0, 1] consists of 3 edges connecting these vertices. Give two
permutations og, o1 describing this dessin. What is the monodromy group?

Solution: Let g = w® + (1 — 22), then E = S,. Let f: S, — P! be f(z,w) = 3= Observe that
f =mo % where 2: S; — P! is the projection to z-coordinate and m: P — P! with m(z) = 2. So

m is an isomorphism and branch(m) = (). Then we get

(z,w) —

branch(f) = m(branch(2)) U branch(m) = m(branch(2)) .

So, we need to find branch(2). For that, we need to compute S;:

S, ={(zw) e C?: g(z,w) = 0, g (z,w) # 0, the coefficient of highest power of w in g # 0}
= {(z,w) € C*: g(z,w) = 0,3w* # 0}
= {(z,w) € C*: g(z,w) = 0,w # 0}
={(z,w) € C?: g(z,w) = 0,2% # 1}
={(z,w) €C*: g(z,w) =0,z ¢ {—1,1}}

Remember we have branch(Z) C 2(S, \ S7). It is clear that (S, \ S7) = {—1,1,00}, hence we have
branch(2) C {—1,1,00}. Then we get

branch(f) = m(branch(2)) C m({-1,1,00}) = {0, 1, 00}



which shows that f is a Belyi map. So, we can draw the dessin associated to f: S, — P'. Observe
that deg f = deg 2 = 3, the degree of g seen as a polynomial in w. E = S, is an elliptic curve, hence
our surface is a torus (we will show an alternative way to deduce this in the end). To draw the dessin
on it, we need to find branch points of f and their ramification indices.

The branch points for 0 are given by f~1(0) = 271(—1). To compute |27 (—1)|, we will consider the

circle |z + 1| = ¢ for a sufficiently small € > 0. We can write g(z,w) = 0 as w3 + (1 — 22) = 0 which
gives
w? = (z—1)(z+1)

We only care about the terms with (z + 1) in the right hand side, hence we can consider
w® = (z+1)

instead. If we draw the solutions of this equation in w for the circle |z+1| = €, we will get ged(3,1) =1
disjoint circle in the complex plane, where 3 is the power of w and 1 is the power of (z + 1) in the
equation. Hence we get |27(—1)| = 1. This means f~!(0) = 27'(—1) = {a} for some a, and vy(a) =3
since the ramification indices in f~!(0) must add up to deg f = 3. This shows the dessin associated to
f has a unique white vertex with 3 edges attached to it.

The branch points for 1 are given by f~(1) = 271(1). To compute |271(1)], we will consider the circle
|z — 1] = € for a sufficiently small £ > 0. We can write g(z,w) = 0 as w3 = (z — 1)(z + 1) as shown
above. We only care about the terms with (z — 1) in the right hand side, hence we can consider

w® = (z—1)

instead. If we draw the solutions of this equation in w for the circle |z — 1| = ¢, we will get ged(3,1) =1
disjoint circle in the complex plane, where 3 is the power of w and 1 is the power of (z — 1) in the
equation. Hence we get |271(1)] = 1. This means f~1(1) = 271(1) = {b} for some b, and vs(b) = 3
since the ramification indices in f~!(1) must add up to deg f = 3. This shows the dessin associated to
f has a unique black vertex with 3 edges attached to it.

The branch points for oo are given by f~!(c0) = 27!(c0). To compute |27 (c0)|, we will consider the
circle |z| = N for a sufficiently large N > 0. We can write g(z,w) = 0 as w® = (z — 1)(z + 1) as shown
above. Since z is very large, we have z — 1 & z and z + 1 = z approximately, hence we approximately
get
w? = 2% .

If we draw the solutions of this equation in w for the circle |z| = N, we will get ged(3,2) = 1 disjoint
circle in the complex plane, where 3 is the power of w and 2 is the power of z in the equation. Hence
we get |71 (c0)| = 1. This means f~!(co) = 27!(00) = {c} for some ¢, and vs(c) = 3 since the
ramification indices in f~!(0o) must add up to deg f = 3. This shows the dessin associated to f has a
unique face with 3 x 2 = 6 edges.

We know our surface is torus, because Sy is an elliptic curve. But without this information, we could
still deduce that Sy is torus. The total number of edges is deg f = 3. By the genus formula

2 —2¢g(Sy) = #{vertices} — #{edges} + #{faces} = (1+1)-3+1=0

hence ¢g(Sy) = 1 which means Sy is a torus.

Now, we are ready to draw the dessin associated to f using the information above. We get a unique
dessin (up to equivalence) on the torus, which is:



So the dessin, i.e. f~1[0,1], consists of 3 edges connecting the unique white and black vertices. By
looking at the picture, we get oo = (1,2,3) and o1 = (1,2, 3).

Finally, the monodromy group Mon(f) C S5 can be calculated with the monodromy of the dessin, which
is given by < 09,01 >=< (1,2,3) >= {id, (1,2, 3), (1, 3,2)}. Hence Mon(f) = {id, (1,2, 3),(1,3,2)}.
. (i) For any n > 0, consider the Belyi map on P! defined by

42"
Show that its dessin is the complete bipartite graph K5 .

Solution: First, note that
branch(f) C f({zeroes of f'})U {f(c0)}
_ o Anz (" 4 1) — 42 (202" ) (2" 4 1)
=f ({zeroeb of 1) }) u {0}
= f({zeroes of 4nz""1(2" +1)(1 — 2™)}) U {0}
=f{o}uU{z:z"=1}U{z: 2" =-1}) U {0}
={0,1,00} .

This means f is a Belyi function. So, we can draw the dessin associated to f: P! — P!. Observe that
deg f = 2n, the highest power of z in f(z). Our surface is P!, i.e. sphere. To draw the dessin on it, we
need to find branch points of f and their ramification indices.

Since f is a rational function, we know that the only branch points with ramification index greater
than 1 are the zeroes of f’, which are given by the set {0} U {z: 2" =1}U{z: 2" = —1}, and also we
may have oo, so they are {0,a1,...,an,b1,...,b,, 00} where a; are the solutions of 2™ = 1 and b; are
the solutions of 2™ = —1 for i = 1,...,n. Using this information, we get the following data:

The branch points for 0 are given by f~!(0) = {0,00} and their ramification indices are v¢(0) = n
(since z has the power n in the nominator of f(z)) and vy(co0) = n (since around oo, 2™ + 1 ~ 2™ and
fz) = % = 2, where z has the power n in the denominator).

We know {ay,...,an,} C f~1(1) and vs(a;) > 1 for i = 1,...,n. Also, we know that the sum of
the ramification indices in f~1(1) add up to deg f = 2n. Therefore we must have vs(a;) = 2 for all
i=1,...,n and the branch points for 1 are given by f=*(1) = {a1,...,an}.

The branch points for co are given by f~1(cc) = {b1,...,b,} and we know v (b;) > 1 fori=1,...,n.
Since the sum of the ramification indices in f~'(cc) add up to deg f = 2n, we must have vs(b;) = 2
fori=1,...,n.



Now, we are ready to draw the dessin associated to f. The branch points for 0 correspond to the
white points, and the ramification index of each branch point is the number of edges adjacent to the
corresponding vertex. The branch points for 1 correspond to the black points, and the ramification
index of each branch point is the number of edges adjacent to the corresponding vertex. The branch
points for co correspond to the faces, and the ramification index of each branch point is half the number
of edges of the corresponding face. The total number of edges is deg f = 2n. Then we get a unique
dessin (up to equivalence) on the sphere, which is:

edges

n edges

(ii) For any n > 0, consider the Belyi map on P! defined by

on 2
foy= EIE

Show that its dessin is the circular graph Cy,, with 2n vertices.

Solution: First, note that

branch(f) C f({zeroes of f'}) U {f(o0)}

B 42" (202" 1) (2" + 1) — dnzn (2" 4 1)2

=f <{zeroes of T DE }) U {oc}
= f({zeroes of 4nz""1 (2" +1)(z" — 1)}) U {oc}
=f{0}u{z:2"=1}U{z: 2" = -1}) U{oc}

={0,1,00} .

This means f is a Belyi function. So, we can draw the dessin associated to f: P! — P!. Observe that
deg f = 2n, the highest power of z in f(z). Our surface is P!, i.e. sphere. To draw the dessin on it, we
need to find branch points of f and their ramification indices.

Since f is a rational function, we know that the only branch points with ramification index greater
than 1 are the zeroes of f’, which are given by the set {0} U{z: 2" =1}U{z: 2" = —1}, and also we
may have oo, so they are {0,a1,...,an,b1,...,b,, 00} where a; are the solutions of z™ = 1 and b; are
the solutions of 2™ = —1 for i = 1,...,n. Using this information, we get the following data:

The branch points for 0 are given by f~1(0) = {b1,...,b,} and we know v¢(b;) > 1 fori =1,...,n.
Since the sum of the ramification indices in f~*(0) add up to deg f = 2n, we must have vs(b;) = 2 for
1=1,...,n.

We know {ay,...,an,} C f71(1) and vs(a;) > 1 for i = 1,...,n. Also, we know that the sum of
the ramification indices in f~!(1) add up to deg f = 2n. Therefore we must have vs(a;) = 2 for all
i=1,...,n and the branch points for 1 are given by f=*(1) = {a1,...,an}



The branch points for co are given by f~!(co0) = {0,00} and their ramification indices are v;(0) = n
(z")2 _am
Azn 4

(since 0 is a pole of order n in f(z)) and v¢(co) = n (since around oo, 2" +1 = 2™ and f(z) ~
where z has the power n in the nominator).

Now, we are ready to draw the dessin associated to f. The branch points for 0 correspond to the
white points, and the ramification index of each branch point is the number of edges adjacent to the
corresponding vertex. The branch points for 1 correspond to the black points, and the ramification
index of each branch point is the number of edges adjacent to the corresponding vertex. The branch
points for co correspond to the faces, and the ramification index of each branch point is half the number
of edges of the corresponding face. The total number of edges is deg f = 2n. Then we get a unique
dessin (up to equivalence) on the sphere, which is:

2n edges



