Curves - Homework 3

Yankı Lekili, Autumn 2019

1) Given a lattice $\Lambda \subset \mathbb{C}$. Let $C_{\Lambda} \subset \mathbb{P}^{2}$ be the projective curve defined by

$$
Y^{2} Z-4 X^{3}+g_{2} X Z^{2}+g_{3} Z^{3}=0
$$

Show that there is a well-defined map $\mathbb{C} / \Lambda \rightarrow C_{\Lambda}$ given by

$$
[z+\Lambda] \mapsto\left\{\begin{array}{l}
{\left[\wp(z), \wp^{\prime}(z), 1\right] \text { if } z \notin \Lambda} \\
{[0,1,0] \text { if } z \in \Lambda}
\end{array}\right.
$$

which is an isomorphism of Riemann surfaces.
2) Given a curve C_{Λ} by the equation

$$
Y^{2} Z-4 X^{3}+g_{2} X Z^{2}+g_{3} Z^{3}=0
$$

we define

$$
J(\Lambda)=\frac{g_{2}^{3}}{g_{2}^{3}-27 g_{3}^{2}}
$$

(i) Show that $g_{2}^{3}-27 g_{3}^{2} \neq 0$ so that $J(\Lambda)$ is well-defined.
(ii) Given two lattice $\Lambda, \tilde{\Lambda} \subset \mathbb{C}$. Show that if $J(\Lambda)=J(\tilde{\Lambda})$ then the corresponding projective curves

$$
Y^{2} Z-4 X^{3}+g_{2}(\Lambda) X Z^{2}+g_{3}(\Lambda) Z^{3}=0 \text { and } Y^{2} Z-4 X^{3}+g_{2}(\tilde{\Lambda}) X Z^{2}+g_{3}(\tilde{\Lambda}) Z^{3}=0
$$

are projectively equivalent in \mathbb{P}^{2}.
(iii) Given two lattices $\Lambda, \tilde{\Lambda} \subset \mathbb{C}$. Show that the following are equivalent:

- \mathbb{C} / Λ is biholomorphic to $\mathbb{C} / \tilde{\Lambda}$.
- $\Lambda=c \tilde{\Lambda}$ for some $c \in \mathbb{C}^{\times}$.
- $J(\Lambda)=J(\tilde{\Lambda})$.

3) Compute the Euler characteristic of a compact orientable surface of genus g.
4) Consider the curve $C=\left\{[X, Y, Z] \in \mathbb{P}^{2}: Z^{2} Y^{2}=X^{4}+Y^{4}+Z^{4}\right\}$. Show that this curve is smooth. Consider the holomorphic map $f: C \rightarrow \mathbb{P}^{1}$ given by projection given by

$$
[X: Y: Z] \rightarrow[X: Y] .
$$

Check that f gives a well-defined holomorphic map when restricted to C. What is the degree of f ? What are the branch points of f ? Compute the branching index b_{f} and use this together with the Riemann-Hurwitz formula to compute the genus of C_{1}.
4) Show that a proper, local homeomorphism between Riemann surfaces (or more generally between any topological manifolds) is a covering map. Give an example of a local homeomorphism that is not a covering map.
5) Let S be the compact Riemann surface associated to the equation $z^{2 a}-2 w^{b} z^{a}+1=0$, for fixed positive integers a, b with $(a, b)=1$. Identify the branch points of the covering of the Riemann sphere defined by the projection to the z co-ordinate, and hence show that the genus of S is $a b-a$.
6) (i) Find the compact connected Riemann surface S associated to the affine curve $C \subset \mathbb{C}^{2}$ defined by the irreducible polynomial $f(x, y)=x^{3}+y^{3}-1$ (Hint: Consider the projectivization and check that its smooth). How many points are there in $S \backslash C$? Show that projection x induces a map $S \rightarrow \mathbb{P}^{1}$ of degree 3. Using Riemann-Hurwitz formula for this projection show that the genus of S is 1 .
(ii) Find the compact connected Riemann surface S associated to the affine curve $C \subset \mathbb{C}^{2}$ defined by the irreducible polynomial $f(x, y)=y^{2}-x^{6}+1$. (Hint: Projectivization in \mathbb{P}^{2} gives a singular curve. Find S by studying the map $C \rightarrow \mathbb{C}$ given by projection to x.) How many points are there in $S \backslash C$? Show that the projection to x induces a map $S \rightarrow \mathbb{P}^{1}$ of degree 2 . Using the Riemann-Hurwitz formula for this projection show that the genus of S is 2 .
7) Let $a_{1}, a_{2}, \ldots, a_{r}$ be distinct points in \mathbb{C} and p a prime number. Let S be the compact connected Riemann surface associated to the curve

$$
f(z, w)=z^{p}-\left(w-a_{1}\right)^{m_{1}}\left(w-a_{2}\right)^{m_{2}} \ldots\left(w-a_{r}\right)^{m_{r}}
$$

$1 \leq m_{i}<p$.
Compute the branching points of the projection to w. How many points are there in $S \backslash S_{f}^{w}$? Use Riemann-Hurwitz formula show that

$$
g= \begin{cases}\frac{(p-1)(r-1)}{2} & \text { if } \operatorname{gcd}\left(\sum m_{i}, p\right)=1 \\ \frac{(p-1)(r-2)}{2} & \text { otherwise }\end{cases}
$$

