Curves - Homework 2

Yankı Lekili, Autumn 2019

1) Show that the projective curve $X^{2}+Y^{2}=Z^{2}$ is non-singular and in fact isomorphic to \mathbb{P}^{1} as a Riemann surface.
2) For which values of $\lambda \in \mathbb{C}$, are the curves defined by

$$
X^{3}+Y^{3}+Z^{3}+\lambda X Y Z=0
$$

non-singular?
3) Consider the affine curve C defined by

$$
y^{2}=\left(x-a_{1}\right)\left(x-a_{2}\right) \ldots\left(x-a_{2 g+1}\right)
$$

where $a_{1}, \ldots, a_{2 g+1}$ are distinct points. Show that the affine curve C is non-singular. Show that the projectivization \bar{C} intersects the line at infinity at a unique point. Show that for $g>1$, this point is singular.
4) Let A be a matrix in $G L(3, \mathbb{C})$. Show that A induces a map from \mathbb{P}^{2} to itself. Let F be a homogeneous polynomial defining a projective curve $C \subset \mathbb{P}^{2}$. Show that A sends C to another projective curve $A(C) \subset \mathbb{P}^{2}$ defined by another polynomial F_{A}. Show that if C is non-singular, so is $A(C)$ and the map $A: C \rightarrow A(C)$ gives an isomorphism of Riemann surfaces.
5) (i) If a line with slope t intersects the circle $x^{2}+y^{2}=1$ in the points $(-1,0)$ and (x, y), show that x and y are both rational functions of t . (A rational function is one that can be written as the quotient of two polynomials.) By taking $t=p / q$ to be a rational number, construct the general solution of the equation $x^{2}+y^{2}=z^{2}$ for which x, y, z are coprime integers.
(ii) Given any smooth conic in \mathbb{P}^{2} defined over rational numbers, i.e a smooth curve defined by an equation of the form

$$
a x^{2}+b x y+c y^{2}+d x z+e y z+f z^{2}=0, \quad a, b, c, d, e, f \in \mathbb{Q}
$$

find a change of co-ordinates (as in Exercise 4) over \mathbb{Q} so that the resulting curve is defined by

$$
\alpha x^{2}+\beta y^{2}=z^{2}, \quad \alpha, \beta \in \mathbb{Q}
$$

6) (i) Show that if $f: S \rightarrow T$ is a non-constant, proper holomorphic map between connected Riemann surfaces then $f^{-1}(t)$ is a finite set for all $t \in T$.
(ii) Show that a non-constant holomorphic function $f: S \rightarrow T$ between connected Riemann surfaces is an open mapping i.e. it sends open sets to open sets.
7) View a non-constant polynomial $f(z) \in \mathbb{C}[z]$ as a holomorphic function from $f: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ by sending ∞ to ∞. Show directly that $v_{f}(\infty)$ is the same as the degree of the polynomial. As a corollary, give a proof fundamental theorem of algebra.
8) Another proof of the fact $K\left(\mathbb{P}^{1}\right)$ is isomorphic to $\mathbb{C}(z)$ can be given as follows. Given $f \in K\left(\mathbb{P}^{1}\right)$, let z_{i} for $i=1, \ldots, n$ be the zeros of f and p_{j} for $j=1, \ldots m$ be the poles of f (repeated as necessary). Consider the function:

$$
g(z)=\frac{\prod_{i=1}^{n}\left(z-z_{i}\right)}{\prod_{j=1}^{m}\left(z-p_{j}\right)}
$$

Show that $f(z) / g(z)$ is a meromorphic function with no zeroes and poles. Hence, it is constant.
9) Recall that if $\Lambda=\mathbb{Z} \oplus \mathbb{Z} \tau \subset \mathbb{C}$ with $\operatorname{Im} \tau>0$, is a lattice, we have a Riemann surface structure on \mathbb{C} / Λ. Show that $K(\mathbb{C} / \Lambda)$ is isomorphic to the field of doubly periodic meromorphic functions on \mathbb{C} with period $(1, \tau)$.
10) Let e_{1}, e_{2}, e_{3} be the values of $\wp(1 / 2), \wp(\tau / 2), \wp((1+\tau) / 2)$ respectively. (i) Show that e_{1}, e_{2}, e_{3} are all distinct. (ii) Show that for any $a \in \mathbb{C} \backslash\left\{e_{1}, e_{2}, e_{3}\right\}$, the equation $\wp(z)=a$ has exactly two distinct solutions.

