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1. (i) (10/25) Prove directly that the projective curve defined by F (X, Y, Z) =

XZ − Y 2 is isomorphic to P1.

(ii) (10/25) Consider the family of elliptic curves in P2 given by

Ca = {([X : Y : Z] ∈ P2 : X3 + Y 3 + Z3 = 3aXY Z}, a ∈ C

Determine the values of a for which Ca is singular, and for those values of a

for which Ca is singular, determine all the singular points of Ca.

(iii) (5/25) For singular Ca show that each irreducible component of Ca is iso-

morphic to P1. (HINT: Show that the lines in CP 2 joining the singular points

of Ca are components of Ca. It suffices to do this only for one singular curve Ca
as the other cases are similar).

2. (i) (5/25) Let f be a holomorphic map Sh → Sg between compact Riemann

surfaces of genus h and g respectively. State the definition of the branching

index bf . State the Riemann-Hurwitz formula.

(ii) (10/25) Show that if h < g then the only holomorphic maps between Sh
and Sg are the constant maps.

(iii) (10/25) Let XF be the projective curve of degree d defined by the homo-

geneous polynomial F (X, Y, Z) = Xd + Y d + Zd, called the Fermat curve. Let

π : XF → P1 be given by π([X : Y : Z]) = [X : Y ].

Check that the Fermat curve is smooth. Show that π is a well-defined map

of degree d. Use the Riemann-Hurwitz formula to compute the genus of X to

be

g(XF ) =
(d− 1)(d− 2)

2
.
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3. (i) (10/25) Let τ ∈ C with Im(τ) > 0. For fixed such τ , consider the following

function

ϑ(z; τ) =
∑
n∈Z

eπ in
2τ+2πinz

Show that the series defining ϑ(z; τ) converges for all z ∈ C.

(ii) Fix τ with Im(τ) > 0 and write ϑ(z) = ϑ(z; τ). Verify the following identi-

ties.

a) (5/25) ϑ(z + 1) = ϑ(z).

b) (5/25) ϑ(z + τ) = e−π iτ−2π izϑ(z).

c) (5/25) For a, b ∈ Z, ϑ(z+a+ bτ) = e−π ib
2τ−2π ibzϑ(z). (HINT: Use induction.

Note that b can be negative.)

4. (i) (5/25) State the weak form of Bezout’s theorem and weak form of Hilbert’s

Nullstellensatz concerning two curves in C2 defined by polynomials f(z, w),

g(z, w) ∈ C[z, w]. Pay close attention to the hypotheses.

(ii) (10/25) Prove that an irreducible affine curve has only finitely many singular

points.

(iii) (10/25) Find the singular points of the quartic curve in CP 2 given by

F = (X2 − Z2)2 − Y 2Z(2Y + 3Z) and determine their multiplicities.

5. (i) (5/25) State Belyi’s theorem.

(ii) (10/25) Suppose that f is a Belyi function on a Riemann surface S. Consider

the degree d map g(z) = zd viewed as a holomorphic map P1 → P1. Show that

g ◦ f : S → P1 is also a Belyi function.

(iii) (10/25) Let f(z) = −4z2(z−1)2
(2z−1)2 define a holomorphic map from P1 to itself.

Show that f is a degree 4 Belyi function. Sketch the dessin d’enfant associated

to f .
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