Homework V Solutions

3) Suppose that A is a finitely generated k-algebra and an integral domain. Show that $h(\mathfrak{m})=$ $\operatorname{dim} A$ for all maximal ideals $\mathfrak{m} \subset A$. (Hint: Show that you can reduce to the special case $A=$ $k\left[X_{1}, \ldots, X_{n}\right]$.) Deduce that for a prime ideal $\mathfrak{p} \subset A$, one has $\operatorname{dim} A / \mathfrak{p}+\operatorname{dim} A_{\mathfrak{p}}=\operatorname{dim} A$.
\triangleright By Noether normalisation theorem, we can find a polynomial algebra $k\left[X_{1}, \ldots, X_{n}\right] \subset A$ such that A is an integral extension of $k\left[X_{1}, \ldots, X_{n}\right]$, then by Cohen-Seidenberg theorem the intersection map gives a bijection between chains of prime ideals in A and chains of prime ideals in $k\left[X_{1}, \ldots, X_{n}\right]$, and maximal ideals in A are mapped to maximal ideals in $k\left[X_{1}, \ldots, X_{n}\right]$. Therefore, we can suppose that $A=k\left[X_{1}, \ldots, X_{n}\right]$.

We will next prove that $k\left[X_{1}, \ldots, X_{n}\right]$ is catenary: Let \mathfrak{m} be any maximal ideal and suppose $(0)=\mathfrak{p}_{0} \subsetneq \mathfrak{p}_{1} \subsetneq \ldots \subsetneq \mathfrak{p}_{d}=\mathfrak{m}$ be a maximal chain of prime ideals in $k\left[X_{1}, \ldots, X_{n}\right]$ then $d=n$. Here by a maximal chain, it is meant that we cannot squeeze in more prime ideals in the chain.

We give a proof by induction on n. If $n=1$, then $k[X]$ is a PID, and all the non-zero prime ideals are maximal, hence all the maximal chains of prime ideals are given by $(0) \subsetneq(f)$ for some irreducible polynomial f. Hence, $k[X]$ is catenary. Let $(0)=\mathfrak{p}_{0} \subsetneq \mathfrak{p}_{1} \subsetneq \ldots \subsetneq \mathfrak{p}_{d}=\mathfrak{m}$ be a maximal chain of prime ideals in $k\left[X_{1}, \ldots, X_{n}\right]$. Since $k\left[X_{1}, \ldots, X_{n}\right]$ is a UFD and \mathfrak{p}_{1} has height 1, it follows that $\mathfrak{p}_{1}=(f)$ for some irreducible polynomial (by the previous problem). As in the proof of Noether normalisation lemma, we can assume by a change of co-ordinates (which is an automorphism of the ring $k\left[X_{1}, \ldots, X_{n}\right]$) that f is monic in X_{n}. Now, consider the finitely generated k-algebra, $k\left[X_{1}, \ldots, X_{n}\right] /(f)$. We get the following chain of prime ideals in this ring

$$
(0) \subsetneq \mathfrak{p}_{2} /(f) \subsetneq \ldots \subsetneq \mathfrak{p}_{d} /(f)
$$

which is a maximal chain of prime ideals in this ring, since the original chain is a maximal chain of prime ideals. Now f is monic, hence $k\left[X_{1}, \ldots, X_{n}\right] /(f)$ is an integral extension of $k\left[X_{1}, \ldots, X_{n-1}\right]$ again by Cohen-Seidenberg, and by induction all the maximal chains of prime ideals has to have length $d-1$. It follows that $d=n$, as required.

We now take A to be any finitely generated k-algebra and integral domain, and \mathfrak{p} be prime ideal in A. Let $(0)=\mathfrak{p}_{0} \subsetneq \mathfrak{p}_{1} \subsetneq \ldots \subsetneq \mathfrak{p}_{i}=\mathfrak{p}$ be a chain of prime ideals computing $h(\mathfrak{p})=\operatorname{dim} A_{\mathfrak{p}}$. On the other hand, let $\mathfrak{p} \subsetneq \mathfrak{p}_{i+1} \subsetneq \ldots \subsetneq \mathfrak{p}_{d}=\mathfrak{m}$ be a chain of prime ideals computing $\operatorname{dim} A / \mathfrak{p}$. Putting these together we get a maximal chain

$$
(0)=\mathfrak{p}_{0} \subsetneq \mathfrak{p}_{1} \subsetneq \ldots \subsetneq \mathfrak{p}_{d}=\mathfrak{m}
$$

of prime ideals in A with $\mathfrak{p}_{i}=\mathfrak{p}$. By the catenary property proved before, it follows that $d=\operatorname{dim} A$, hence $\operatorname{dim} A / \mathfrak{p}+\operatorname{dim} A_{\mathfrak{p}}=\operatorname{dim} A$ as required.
4) Let $I=\left(f_{1}, \ldots, f_{r}\right) \subset k\left[X_{1}, \ldots, X_{n}\right]$, then for any irreducible component W of $V=\mathscr{V}(I)$, one has $\operatorname{dim}(W) \geq n-r$.
\triangleright In a Noetherian ring, irreducible components of $\mathscr{V}(I)$ correspond to (finitely many) prime ideals $\mathfrak{p} \supset I$ which are minimal among prime ideals containing I. Indeed, we have $\sqrt{I}=\mathfrak{p}_{1} \cap \mathfrak{p}_{2} \cap \ldots \cap \mathfrak{p}_{r}$ where $\mathfrak{p}_{1}, \mathfrak{p}_{2}, \ldots, \mathfrak{p}_{r}$ are minimal prime ideals containing I and $\mathscr{V}(I)=\mathscr{V}\left(\mathfrak{p}_{1}\right) \cup \ldots \cup \mathscr{V}\left(\mathfrak{p}_{r}\right)$ (see lecture notes).

Now, let \mathfrak{p} be one of $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{r}$, and $W=\mathscr{V}(\mathfrak{p})$. We have

$$
\operatorname{dim}(W):=\operatorname{dim} k\left[X_{1}, \ldots, X_{n}\right] / \mathfrak{p}=n-h(\mathfrak{p})
$$

where the first equality is by definition, and the second equality is by the previous problem. Finally, by Krull's height theorem $h(\mathfrak{p}) \leq r$, hence it follows that $\operatorname{dim} W \geq n-r$ as required.

If we wanted to think about the affine varieties in the case k is algebraically closed, we can consider the (geometric) decomposition into irreducible affine varieties $\mathcal{V}(I)=\mathcal{V}\left(\mathfrak{p}_{1}\right) \cup \ldots \cup \mathcal{V}\left(\mathfrak{p}_{r}\right)$ and take $W=\mathcal{V}(\mathfrak{p})$. Then we appeal to Theorem 6.25 in the lecture notes, to say that $\operatorname{dim}(W)=$ $\operatorname{dim} k\left[X_{1}, \ldots, X_{n}\right] / \mathfrak{p}$ and the rest of the proof is the same.
6) Let B be an integral extension of A. Let $\mathfrak{m} \subset B$ be a maximal ideal and $\mathfrak{n}=\mathfrak{m} \cap A$ be the corresponding maximal ideal in A. Is $B_{\mathfrak{m}}$ integral over $A_{\mathfrak{n}}$? (Hint: Consider the example $A=k\left[x^{2}-1\right]$ and $B=k[x]$, where k is a field with characteristic other than 2 , and $\mathfrak{m}=(x-1)$. Can the element $1 /(x+1)$ be integral?)
$\triangleright B$ is integral over A, since x satisfies the monic equation $T^{2}-\left(x^{2}-1\right)-1=0$ with coefficients in A.

We have $\mathfrak{n}=(x-1) \cap k\left[x^{2}-1\right]=\left(x^{2}-1\right)$. To see this, note that $x^{2}-1 \in \mathfrak{n}$ and it generates a maximal ideal. As $x+1 \notin(x-1) \subset k[x]$, we have $1 /(x+1) \in B_{\mathfrak{m}}$. Suppose $1 /(x+1)$ is integral over $A_{\mathfrak{n}}$. This means that we have an equation

$$
\left(\frac{1}{x+1}\right)^{n}+a_{n-1}\left(\frac{1}{x+1}\right)^{n-1}+\ldots+a_{1}\left(\frac{1}{x+1}\right)+a_{0}=0
$$

that holds in $B_{\mathfrak{m}}$ with $a_{i} \in A_{\mathfrak{n}}$. Multiplying it with $(x+1)^{n}$, we get

$$
1+a_{n-1}(x+1)+\ldots+a_{1}(x+1)^{n-1}+a_{0}(x+1)^{n}=0
$$

We can now evaluate this at $x=-1$, to get a contradiction. (Note that the evaluation at $x=-1$ is well-defined since the denominators of elements in $A_{\mathfrak{n}}$ are from $k\left[x^{2}-1\right] \backslash\left(x^{2}-1\right)$.)

