Homework V Solutions

3) Suppose that A is a finitely generated k-algebra and an integral domain. Show that $h(\mathfrak{m}) = \dim A$ for all maximal ideals $\mathfrak{m} \subset A$. (Hint: Show that you can reduce to the special case $A = k[X_1, \ldots, X_n]$.) Deduce that for a prime ideal $\mathfrak{p} \subset A$, one has $\dim A/\mathfrak{p} + \dim A_\mathfrak{p} = \dim A$.

▷ By Noether normalisation theorem, we can find a polynomial algebra $k[X_1, \ldots, X_n] \subset A$ such that A is an integral extension of $k[X_1, \ldots, X_n]$, then by Cohen-Seidenberg theorem the intersection map gives a bijection between chains of prime ideals in A and chains of prime ideals in $k[X_1, \ldots, X_n]$, and maximal ideals in A are mapped to maximal ideals in $k[X_1, \ldots, X_n]$. Therefore, we can suppose that $A = k[X_1, \ldots, X_n]$.

We will next prove that $k[X_1, \ldots, X_n]$ is catenary: Let \mathfrak{m} be any maximal ideal and suppose $(0) = \mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \ldots \subsetneq \mathfrak{p}_d = \mathfrak{m}$ be a maximal chain of prime ideals in $k[X_1, \ldots, X_n]$ then d = n. Here by a maximal chain, it is meant that we cannot squeeze in more prime ideals in the chain.

We give a proof by induction on n. If n = 1, then k[X] is a PID, and all the non-zero prime ideals are maximal, hence all the maximal chains of prime ideals are given by $(0) \subsetneq (f)$ for some irreducible polynomial f. Hence, k[X] is catenary. Let $(0) = \mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \ldots \subsetneq \mathfrak{p}_d = \mathfrak{m}$ be a maximal chain of prime ideals in $k[X_1, \ldots, X_n]$. Since $k[X_1, \ldots, X_n]$ is a UFD and \mathfrak{p}_1 has height 1, it follows that $\mathfrak{p}_1 = (f)$ for some irreducible polynomial (by the previous problem). As in the proof of Noether normalisation lemma, we can assume by a change of co-ordinates (which is an automorphism of the ring $k[X_1, \ldots, X_n]$) that f is monic in X_n . Now, consider the finitely generated k-algebra, $k[X_1, \ldots, X_n]/(f)$. We get the following chain of prime ideals in this ring

$$(0) \subsetneq \mathfrak{p}_2/(f) \subsetneq \ldots \subsetneq \mathfrak{p}_d/(f)$$

which is a maximal chain of prime ideals in this ring, since the original chain is a maximal chain of prime ideals. Now f is monic, hence $k[X_1, \ldots, X_n]/(f)$ is an integral extension of $k[X_1, \ldots, X_{n-1}]$ again by Cohen-Seidenberg, and by induction all the maximal chains of prime ideals has to have length d-1. It follows that d=n, as required.

We now take A to be any finitely generated k-algebra and integral domain, and \mathfrak{p} be prime ideal in A. Let $(0) = \mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \ldots \subsetneq \mathfrak{p}_i = \mathfrak{p}$ be a chain of prime ideals computing $h(\mathfrak{p}) = \dim A_{\mathfrak{p}}$. On the other hand, let $\mathfrak{p} \subsetneq \mathfrak{p}_{i+1} \subsetneq \ldots \subsetneq \mathfrak{p}_d = \mathfrak{m}$ be a chain of prime ideals computing $\dim A/\mathfrak{p}$. Putting these together we get a maximal chain

$$(0) = \mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \ldots \subsetneq \mathfrak{p}_d = \mathfrak{m}$$

of prime ideals in A with $\mathfrak{p}_i = \mathfrak{p}$. By the catenary property proved before, it follows that $d = \dim A$, hence $\dim A/\mathfrak{p} + \dim A_\mathfrak{p} = \dim A$ as required.

4) Let $I = (f_1, \ldots, f_r) \subset k[X_1, \ldots, X_n]$, then for any irreducible component W of $V = \mathscr{V}(I)$, one has $\dim(W) \geq n - r$.

▷ In a Noetherian ring, irreducible components of $\mathscr{V}(I)$ correspond to (finitely many) prime ideals $\mathfrak{p} \supset I$ which are minimal among prime ideals containing I. Indeed, we have $\sqrt{I} = \mathfrak{p}_1 \cap \mathfrak{p}_2 \cap \ldots \cap \mathfrak{p}_r$ where $\mathfrak{p}_1, \mathfrak{p}_2, \ldots, \mathfrak{p}_r$ are minimal prime ideals containing I and $\mathscr{V}(I) = \mathscr{V}(\mathfrak{p}_1) \cup \ldots \cup \mathscr{V}(\mathfrak{p}_r)$ (see lecture notes).

Now, let \mathfrak{p} be one of $\mathfrak{p}_1, \ldots, \mathfrak{p}_r$, and $W = \mathscr{V}(\mathfrak{p})$. We have

$$\dim(W) \coloneqq \dim k[X_1, \dots, X_n]/\mathfrak{p} = n - h(\mathfrak{p})$$

where the first equality is by definition, and the second equality is by the previous problem. Finally, by Krull's height theorem $h(\mathfrak{p}) \leq r$, hence it follows that dim $W \geq n-r$ as required.

If we wanted to think about the affine varieties in the case k is algebraically closed, we can consider the (geometric) decomposition into irreducible affine varieties $\mathcal{V}(I) = \mathcal{V}(\mathfrak{p}_1) \cup \ldots \cup \mathcal{V}(\mathfrak{p}_r)$ and take $W = \mathcal{V}(\mathfrak{p})$. Then we appeal to Theorem 6.25 in the lecture notes, to say that $\dim(W) = \dim [X_1, \ldots, X_n]/\mathfrak{p}$ and the rest of the proof is the same.

6) Let *B* be an integral extension of *A*. Let $\mathfrak{m} \subset B$ be a maximal ideal and $\mathfrak{n} = \mathfrak{m} \cap A$ be the corresponding maximal ideal in *A*. Is $B_{\mathfrak{m}}$ integral over $A_{\mathfrak{n}}$? (Hint: Consider the example $A = k[x^2 - 1]$ and B = k[x], where *k* is a field with characteristic other than 2, and $\mathfrak{m} = (x - 1)$. Can the element 1/(x + 1) be integral?)

 $\triangleright B$ is integral over A, since x satisfies the monic equation $T^2 - (x^2 - 1) - 1 = 0$ with coefficients in A.

We have $\mathfrak{n} = (x-1) \cap k[x^2-1] = (x^2-1)$. To see this, note that $x^2-1 \in \mathfrak{n}$ and it generates a maximal ideal. As $x+1 \notin (x-1) \subset k[x]$, we have $1/(x+1) \in B_{\mathfrak{m}}$. Suppose 1/(x+1) is integral over $A_{\mathfrak{n}}$. This means that we have an equation

$$\left(\frac{1}{x+1}\right)^n + a_{n-1}\left(\frac{1}{x+1}\right)^{n-1} + \ldots + a_1\left(\frac{1}{x+1}\right) + a_0 = 0$$

that holds in $B_{\mathfrak{m}}$ with $a_i \in A_{\mathfrak{n}}$. Multiplying it with $(x+1)^n$, we get

$$1 + a_{n-1}(x+1) + \ldots + a_1(x+1)^{n-1} + a_0(x+1)^n = 0$$

We can now evaluate this at x = -1, to get a contradiction. (Note that the evaluation at x = -1 is well-defined since the denominators of elements in A_n are from $k[x^2 - 1] \setminus (x^2 - 1)$.)