Homework III Solutions

2) Let X be an affine variety such that X is a finite set. Let $I=\mathcal{I}(X)$. Show that the Hilbert polynomial $H P_{I}(t)$ is constant and equal to $|X|$.
\triangleright Let $x=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in k^{n}$. Then $\mathcal{I}(x)$ is the maximal ideal $\mathfrak{m}_{x}=\left(X_{1}-a_{1}, X_{2}-a_{2}, \ldots, X_{n}-\right.$ $\left.a_{n}\right) \in k\left[X_{1}, \ldots, X_{n}\right]$. Indeed, $X_{i}-a_{i}$ vanishes on x. Conversely, if $f \in k\left[X_{1}, \ldots, X_{n}\right]$ then applying division with remainder we can write $f=g_{1}\left(X_{1}-a_{1}\right)+\ldots+g_{n}\left(X_{n}-a_{n}\right)+r$ with $r \in k$. Now, if $f(x)=0$, it follows that $r=0$.

We deduce that if X is a finite union of points, then we have $\mathcal{I}(X)=\bigcap_{x \in X} \mathfrak{m}_{x}$. Therefore, by the Sunzi remainder theorem, since maximal ideals are pairwise coprime, we have

$$
k\left[X_{1}, X_{2}, \ldots X_{n}\right] / \mathcal{I}(X)=\prod_{x \in X} k\left[X_{1}, \ldots, X_{n}\right] / \mathfrak{m}_{x}=\prod_{x \in X} k
$$

Thus, we conclude that Hilbert polynimial of $\mathcal{I}(X)$ is constant and equal to $|X|$.
Extra: Suppose $X=\left\{x_{1}, \ldots, x_{m}\right\}$ with $x_{i}=\left(x_{i}^{(1)}, x_{i}^{(2)}, \ldots, x_{i}^{(n)}\right) \in k^{n}$. It is possible to give the above isomorphism more explicitly by finding polnomials $f_{1}, \ldots, f_{m} \in k\left[X_{1}, \ldots, X_{n}\right]$ such that $f_{i}\left(x_{i}\right)=1$ and $f_{i}\left(x_{j}\right)=0$ for $i \neq j$. One way of defining such polynomials is as follows: For each distinct pair $i, j \in\{1, \ldots, m\}$ find $k_{i j}$ such that $x_{i}^{\left(k_{i j}\right)} \neq x_{j}^{\left(k_{i j}\right)}$. Such $k_{i j}$ has to exist as x_{i} and x_{j} are different points. Now define

$$
f_{i}=\prod_{\substack{j=1 \\ j \neq i}}^{m} \frac{X_{k_{i j}}-x_{j}^{\left(k_{i j}\right)}}{x_{i}^{\left(k_{i j}\right)}-x_{j}^{\left(k_{i j}\right)}}
$$

5) Find the normalisation of $\mathbb{Z}[\sqrt{d}]$ for d a square-free integer.
\triangleright We first note that the field of fractions of $\mathbb{Z}[\sqrt{d}]$ is $K=\mathbb{Q}(\sqrt{d})$. This follows easily from the observation that $\mathbb{Q}(\sqrt{d})$ is the smallest field that contains $\mathbb{Z}[\sqrt{d}]$. Or alternatively, one can write an explicit isomorphism using
$\frac{x+y \sqrt{d}}{z+w \sqrt{d}}=\frac{(x+y \sqrt{d})(z-w \sqrt{d})}{z^{2}-d w^{2}}=\frac{x z-y w d}{z^{2}-d w^{2}}+\frac{(y z-x w)}{z^{2}-d w^{2}} \sqrt{d}$ for $x, y, z, w \in \mathbb{Z},(z, w) \neq(0,0)$.
Next, we observe that any element of K that is integral over $\mathbb{Z}[\sqrt{d}]$ is in fact integral over \mathbb{Z}. This holds because $\mathbb{Z}[\sqrt{d}]$ is an integral extension of \mathbb{Z} since \sqrt{d} is the root of the monic polynomial $X^{2}-d$ with integer coefficients. Therefore, the normalisation of $\mathbb{Z}[\sqrt{d}]$ coincides with the algebraic integers \mathcal{O}_{K}, that is the integral closure of \mathbb{Z} in $K=\mathbb{Q}(\sqrt{d})$.
Let $\alpha=u+v \sqrt{d} \in \mathcal{O}_{K}$, then α is a zero of the polynomial

$$
X^{2}-2 u X+u^{2}-d v^{2}
$$

so, by Gauss lemma, the rational numbers $2 u$ and $u^{2}-d v^{2}$ must in fact be integers. We have $4 u^{2}-4 d v^{2}$ and d is square-free, hence $2 v$ must be an integer as well. Next, we observe that if d is congruent to 2 or 3 modulo 4 , then since $4 u^{2}-4 d v^{2} \equiv 0(\bmod 4)$ and a square is congruent to 0 or $1(\bmod 4)$, we see that $2 u$ and $2 v$ must be even, which implies u and v are integers. In this case, we conclude that $\mathcal{O}_{K}=\mathbb{Z}[\sqrt{d}]$. On the other hand, if d is congruent to 1 modulo 4 , then $2 u \equiv 2 v(\bmod 4)$, hence $u-v$ is an integer. Hence, we get that elements of \mathcal{O}_{K} must be of the form $\mathbb{Z}+\mathbb{Z} \frac{1+\sqrt{d}}{2}$. Finally, we note that $\frac{1+\sqrt{d}}{2}$ is indeed in \mathcal{O}_{K} since setting $u=v=1 / 2$ gives $2 u \in \mathbb{Z}$ and $u^{2}-d v^{2} \in \mathbb{Z}$. We conclude that $\mathcal{O}_{K}=\mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right]$.
7) Consider a 2-by-2 matrix M with entries X, Y, Z, W. If we then want to solve $M^{2}=0$, we get four equations and let's make that into an ideal $I=\left(X^{2}+Y Z, X Y+Y W, X Z+W Z, W^{2}+Y Z\right) \in$ $k[X, Y, Z, W]$. Is I a radical ideal? Show that $\sqrt{I}=(X+W, X W-Y Z)$.

Let us first give a proof under the assumption $k=\bar{k}$ algebraically closed. Recall that the characteristic polynomial of a 2 -by- 2 matrix M is given by

$$
\chi_{M}(t)=t^{2}-(\operatorname{tr} M) t+\operatorname{det} M
$$

Now, since $M^{2}=0$ and $\chi_{M}(M)=0$ (Cayley-Hamilton theorem), the minimal polynomial of M has to divide both t^{2} and $\chi_{M}(t)$. This implies that $\chi_{M}(t)=t^{2}$, hence $M^{2}=0$ implies that $\operatorname{tr} M=X+W=0$ and $\operatorname{det} M=X W-Y Z=0$.

Thus, it follows from Nullstellensatz (using the fact that k is algebraically closed) that $X+$ $W, X W-Y Z \in \mathcal{I}(\mathcal{V}(I))=\sqrt{I}$. Or equivalently,

$$
J:=(X+W, X W-Y Z) \subset \sqrt{I}
$$

Conversely, to prove that $\sqrt{I} \subset J$ it suffices to show that $I \subset J$ and J is prime. It is easy to see that $I \subset J$ because $X^{2}+Y Z=(X+W) X-(X W-Y Z), X Y+Y W=(X+W) Y$, $X Z+W Z=(X+W) Z, W^{2}+Y Z=(X+W) W-(X W-Y Z)$. (Alternatively, observe that if $\operatorname{tr} M=0=\operatorname{det} M$, then from $\chi_{M}(M)=0$, we conclude that $M^{2}=0$. Hence, $I \subset \sqrt{J}$ by Nullstellensatz, which implies $I \subset J=\sqrt{J}$ if we show that J is prime.)

It remains to show $J=(X+W, X W-Y Z)$ is prime. Showing this is equivalent to proving that $k[X, Y, Z, W] /(X+W, X W-Y Z)$ is an integral domain. Let us first observe the ring isomorphism

$$
k[X, Y, Z, W] /(X+W, X W-Y Z) \simeq k[X, Y, Z] /\left(X^{2}+Y Z\right)
$$

given by sending $(\bar{X}, \bar{Y}, \bar{Z}, \bar{W}) \rightarrow(\bar{X}, \bar{Y}, \bar{Z},-\bar{X})$. We observe that this sends $(X+W, X W-Y Z)$ to $\left(X^{2}+Y Z\right)$. It is obviously surjective. To see that it is injective, by using the relation $X+W=0$, any element of $k[X, Y, Z, W] /(X+W, X W-Y Z)$ can be represented by $f(\bar{X}, \bar{Y}, \bar{Z})$ for some $f \in k[X, Y, Z]$. This element goes to zero in $k[X, Y, Z] /\left(X^{2}+Y Z\right)$ if and only if $f(X, Y, Z)$ is divisible by $X^{2}+Y Z$ but then it is also zero $k[X, Y, Z, W] /(X+W, X W-Y Z)$ since $X^{2}+Y Z=X(X+W)-(X W-Y Z) \in(X+W, X W-Y Z)$. Thus, it suffices to see that $k[X, Y, Z] /\left(X^{2}+Y Z\right)$ is an integral domain, or that $\left(X^{2}+Y Z\right) \subset k[X, Y, Z]$ is prime but this holds because $k[X, Y, Z]$ is a UFD and $f=X^{2}+Y Z$ is irreducible. (To see that f is irreducible, you can observe that it doesn't factor into linear components).

We now give a proof that works in general (without assuming k is algebraically closed). The only place where we used k is algebraically closed was when we argued that $X+W$ and $X W-Y Z$ are in \sqrt{I}. Indeed, we can verify this directly as follows:

$$
\begin{aligned}
(X+W)^{3} & =(X+3 W)\left(X^{2}+Y Z\right)+(W+3 X)\left(W^{2}+Y Z\right)-4 Z(X Y+Y W) \\
(X W-Y Z)^{2} & =\left(X^{2}+Y Z\right)\left(W^{2}+Y Z\right)-X Z(X Y+Y W)-Y W(X Z+W Z)
\end{aligned}
$$

Alternatively, once we see that $X+W \in \sqrt{I}$ from the first equation, we can write $X W-Y Z=$ $(X+W) W-\left(W^{2}+Y Z\right)$ to conclude that it too is in \sqrt{I}.
8) Show that if $f: R \rightarrow S$ is a ring homomorphism between finitely generated k-algebras R and S, then $f^{-1}(\mathfrak{m})$ is a maximal ideal of R for all maximal ideals \mathfrak{m} of S.

Because S is a finitely generated k-algebra, its quotient S / \mathfrak{m} by a maximal ideal \mathfrak{m} is a finite field extension of k by Zariski's lemma. Therefore, the image of R in S / \mathfrak{m} under the composition of ring homomorphisms $R \rightarrow S \rightarrow S / \mathfrak{m}$ is an integral domain which is an integral extension of k, hence is a field (see Corollary 4.22 in the lecture notes). But, the kernel of the map $R \rightarrow S / \mathfrak{m}$ is $f^{-1}(\mathfrak{m})$ hence the image is isomorphic to $R / f^{-1}(\mathfrak{m})$ which we have shown is a field, therefore $f^{-1}(\mathfrak{m})$ is a maximal ideal.

