
Homework III Solutions

2) Let X be an affine variety such that X is a finite set. Let I = I(X). Show that the Hilbert
polynomial HPI(t) is constant and equal to |X|.

▷ Let x = (a1, a2, . . . , an) ∈ kn. Then I(x) is the maximal ideal mx = (X1−a1, X2−a2, . . . , Xn−
an) ∈ k[X1, . . . , Xn]. Indeed, Xi − ai vanishes on x. Conversely, if f ∈ k[X1, . . . , Xn] then
applying division with remainder we can write f = g1(X1 − a1) + . . . + gn(Xn − an) + r with
r ∈ k. Now, if f(x) = 0, it follows that r = 0.

We deduce that if X is a finite union of points, then we have I(X) =
⋂

x∈X mx. Therefore, by
the Sunzi remainder theorem, since maximal ideals are pairwise coprime, we have

k[X1, X2, . . . Xn]/I(X) =
∏
x∈X

k[X1, . . . , Xn]/mx =
∏
x∈X

k

Thus, we conclude that Hilbert polynimial of I(X) is constant and equal to |X|.

Extra: Suppose X = {x1, . . . , xm} with xi = (x
(1)
i , x

(2)
i , . . . , x

(n)
i ) ∈ kn. It is possible to give the

above isomorphism more explicitly by finding polnomials f1, . . . , fm ∈ k[X1, . . . , Xn] such that
fi(xi) = 1 and fi(xj) = 0 for i ̸= j. One way of defining such polynomials is as follows: For

each distinct pair i, j ∈ {1, . . . ,m} find kij such that x
(kij)
i ̸= x

(kij)
j . Such kij has to exist as xi

and xj are different points. Now define

fi =

m∏
j=1,
j ̸=i

Xkij − x
(kij)
j

x
(kij)
i − x

(kij)
j

5) Find the normalisation of Z[
√
d] for d a square-free integer.

▷ We first note that the field of fractions of Z[
√
d] is K = Q(

√
d). This follows easily from the

observation that Q(
√
d) is the smallest field that contains Z[

√
d]. Or alternatively, one can write

an explicit isomorphism using

x+ y
√
d

z + w
√
d
=

(x+ y
√
d)(z − w

√
d)

z2 − dw2
=

xz − ywd

z2 − dw2
+
(yz − xw)

z2 − dw2

√
d for x, y, z, w ∈ Z, (z, w) ̸= (0, 0).

Next, we observe that any element of K that is integral over Z[
√
d] is in fact integral over

Z. This holds because Z[
√
d] is an integral extension of Z since

√
d is the root of the monic

polynomial X2 − d with integer coefficients. Therefore, the normalisation of Z[
√
d] coincides

with the algebraic integers OK , that is the integral closure of Z in K = Q(
√
d).

Let α = u+ v
√
d ∈ OK , then α is a zero of the polynomial

X2 − 2uX + u2 − dv2
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so, by Gauss lemma, the rational numbers 2u and u2 − dv2 must in fact be integers. We have
4u2 − 4dv2 and d is square-free, hence 2v must be an integer as well. Next, we observe that if d
is congruent to 2 or 3 modulo 4, then since 4u2 − 4dv2 ≡ 0 (mod4) and a square is congruent to
0 or 1 (mod 4), we see that 2u and 2v must be even, which implies u and v are integers. In this
case, we conclude that OK = Z[

√
d]. On the other hand, if d is congruent to 1 modulo 4, then

2u ≡ 2v (mod4), hence u − v is an integer. Hence, we get that elements of OK must be of the

form Z + Z1+
√
d

2 . Finally, we note that 1+
√
d

2 is indeed in OK since setting u = v = 1/2 gives

2u ∈ Z and u2 − dv2 ∈ Z. We conclude that OK = Z[1+
√
d

2 ].

7) Consider a 2-by-2 matrix M with entries X,Y, Z,W . If we then want to solve M2 = 0, we get
four equations and let’s make that into an ideal I = (X2+Y Z,XY +YW,XZ+WZ,W 2+Y Z) ∈
k[X,Y, Z,W ]. Is I a radical ideal? Show that

√
I = (X +W,XW − Y Z).

Let us first give a proof under the assumption k = k algebraically closed. Recall that the
characteristic polynomial of a 2-by-2 matrix M is given by

χM (t) = t2 − (trM)t+ detM

Now, since M2 = 0 and χM (M) = 0 (Cayley-Hamilton theorem), the minimal polynomial of
M has to divide both t2 and χM (t). This implies that χM (t) = t2, hence M2 = 0 implies that
trM = X +W = 0 and detM = XW − Y Z = 0.

Thus, it follows from Nullstellensatz (using the fact that k is algebraically closed) that X +
W,XW − Y Z ∈ I(V(I)) =

√
I. Or equivalently,

J := (X +W,XW − Y Z) ⊂
√
I

Conversely, to prove that
√
I ⊂ J it suffices to show that I ⊂ J and J is prime. It is easy

to see that I ⊂ J because X2 + Y Z = (X + W )X − (XW − Y Z), XY + YW = (X + W )Y ,
XZ +WZ = (X +W )Z, W 2 + Y Z = (X +W )W − (XW − Y Z). (Alternatively, observe that
if trM = 0 = detM , then from χM (M) = 0, we conclude that M2 = 0. Hence, I ⊂

√
J by

Nullstellensatz, which implies I ⊂ J =
√
J if we show that J is prime.)

It remains to show J = (X + W,XW − Y Z) is prime. Showing this is equivalent to proving
that k[X,Y, Z,W ]/(X + W,XW − Y Z) is an integral domain. Let us first observe the ring
isomorphism

k[X,Y, Z,W ]/(X +W,XW − Y Z) ≃ k[X,Y, Z]/(X2 + Y Z)

given by sending (X,Y , Z,W ) → (X,Y , Z,−X). We observe that this sends (X+W,XW−Y Z)
to (X2 + Y Z). It is obviously surjective. To see that it is injective, by using the relation
X+W = 0, any element of k[X,Y, Z,W ]/(X+W,XW −Y Z) can be represented by f(X,Y , Z)
for some f ∈ k[X,Y, Z]. This element goes to zero in k[X,Y, Z]/(X2 + Y Z) if and only if
f(X,Y, Z) is divisible by X2 + Y Z but then it is also zero k[X,Y, Z,W ]/(X +W,XW − Y Z)
since X2+Y Z = X(X +W )− (XW −Y Z) ∈ (X +W,XW −Y Z). Thus, it suffices to see that
k[X,Y, Z]/(X2 + Y Z) is an integral domain, or that (X2 + Y Z) ⊂ k[X,Y, Z] is prime but this
holds because k[X,Y, Z] is a UFD and f = X2+Y Z is irreducible. (To see that f is irreducible,
you can observe that it doesn’t factor into linear components).
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We now give a proof that works in general (without assuming k is algebraically closed). The only
place where we used k is algebraically closed was when we argued that X +W and XW − Y Z
are in

√
I. Indeed, we can verify this directly as follows:

(X +W )3 = (X + 3W )(X2 + Y Z) + (W + 3X)(W 2 + Y Z)− 4Z(XY + YW )

(XW − Y Z)2 = (X2 + Y Z)(W 2 + Y Z)−XZ(XY + YW )− YW (XZ +WZ)

Alternatively, once we see that X +W ∈
√
I from the first equation, we can write XW −Y Z =

(X +W )W − (W 2 + Y Z) to conclude that it too is in
√
I.

8) Show that if f : R → S is a ring homomorphism between finitely generated k-algebras R and
S, then f−1(m) is a maximal ideal of R for all maximal ideals m of S.

Because S is a finitely generated k-algebra, its quotient S/m by a maximal ideal m is a finite
field extension of k by Zariski’s lemma. Therefore, the image of R in S/m under the composition
of ring homomorphisms R → S → S/m is an integral domain which is an integral extension of
k, hence is a field (see Corollary 4.22 in the lecture notes). But, the kernel of the map R → S/m
is f−1(m) hence the image is isomorphic to R/f−1(m) which we have shown is a field, therefore
f−1(m) is a maximal ideal.

3


