
Homework II Solutions

Problems 1 and 6

1) Show that

R = {f(X,Y ) =
∑

aijX
iY j |i, j ≥ 0, and i > 0 if j ̸= 0}

is a subring of the Noetherian ring k[X,Y ] but R is not Noetherian.

▷ By definition the ring R is given by polynomials f(X,Y ) ∈ k[X,Y ] which do not have a term
of the form aY i for a ∈ k, i > 0. Adding, subtracting, or multiplying such polynomials together
cannot introduce such terms (and 0, 1 ∈ R), hence R is indeed a subring. We can also describe
this subring as R = k · 1 + Xk[X,Y ] or R = k[X] + XY k[X,Y ] or k[X,XY,XY 2, XY 3, . . .].
The latter description requires an argument (as given below).

To see that R is not Noetherian, suppose that the infinitely generated ideal

m = (X,XY,XY 2, . . .)

of R could be finitely generated. Thus, we can write m = (f1, f2, . . . , fs) for some fi ∈ R. Since
each fi has to be in the original ideal, f1, f2, . . . , fs are generated by at most finitely many of
the original generators, so we deduce that there exist some i such that

m = (X,XY,XY 2, . . . , XY i)

This means, in particular, that there are polynomials g0, g1, . . . , gi ∈ R such that

XY i+1 = g0X + g1XY + g2XY 2 + . . .+ giXY i

Now, the only way the monomial XY i+1 can appear on the right hand side is if gjXY j has
XY i+1 as a term for some j, but that can only happen if gj has a term Y i+1−j . However, gj ∈ R
so it has no terms of that form. We arrive at a contradiction.

6) Suppose that V is a linear space, that is

V = V({fj =
n∑

i=1

aijXi : 1 ≤ j ≤ m})

Show that dimkV = degHPI(t), where I = (f1, f2, . . . , fm).

▷ Solution 1 Let A = (aij) be the m × n matrix with entries aij and let B = (bij) be its
reduced row echelon form (obtained after the process of Gauss elimination). Define linear forms
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gj =
∑n

i=1 bijXi for j = 1, . . . , r corresponding to non-zero rows of B, where we note that r
is equal to rankA. It is clear that I = (g1, . . . , gr) since the linear forms {gi}ri=1 are k-linear
combinations of the linear forms {fi}mi=1 and vice versa.

Note that LT (gi) = Xσ(i) for where σ : {1, . . . , r} → {1, . . . n} is defined such that the first

non-zero entry of the ith-row in the reduced row echelon form appears in column σ(i).

Claim: g1, . . . , gr is a Gröbner basis for I with respect to the lexicographic monomial order with
X1 > X2 > . . . > Xn.

Computing S-polynomials, we get

S(gi, gj) = Xjgi −Xigj = Xj(gi − LT (gi))−Xi(gj − LT (gj))

Now all the terms that appear in gi−LT (gi) and gj −LT (gj) are not divisible by any of LT (gk)
for k = 1, . . . , r. Hence, performing division with {g1, . . . , gr} gives

S(gi, gj) = (gi − LT (gi))gj − (gj − LT (gj))gi

which shows that the remainder is zero for all 1 ≤ i, j ≤ r. Hence, we proved our claim.

Now, we can use the Gröbner basis to deduce that the initial ideal is given by

in(I) = (Xσ(1), Xσ(2), . . . , Xσ(r))

Thus, the complement C(in(I)) is generated as a k-vector space by monomials Xα for α =
(α1, . . . , αn) with αi = 0 if i ∈ Im(σ).

Using the graded lexicographic monomial order (with the above ordering of variables), and
appealing to Macaulay’s lemma, we deduce that

HFI(s) = |C(in(I))≤s| =
(
n− r + s

s

)
=

1

(n− r)!
sn−r + . . .

from which we find that

degHPI = n− r.

On the other hand, as a linear space V is given by the solutions to the linear equation

A ·X = 0

which by the rank-nullity theorem has dimension given by

dimkV = dimkkerA = n− rankA = n− r

Solution 2 This solution instead uses the column reduction. However, we have to be careful
and remember that column operations do not preserve the null space, or the ideal I. Indeed,
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column reduction modifies a matrix A by multiplying from the right by a sequence of elementary
matrices. Thus, the matrix A is related to its reduced column echelon form C via

C = A · E

where E is some invertible matrix given as a product of matrices that perform the column
operations. On the other hand, we can re-write the equation A ·X = 0 as follows:

A ·X = (A · E) · (E−1X) = 0

Therefore, let us define new variables Y by

E−1 ·


X1

·
·

Xn

 =


Y1
·
·
Yn


Since this is a linear change of variables (using an invertible matrix), it induces a ring isomor-
phism

k[X1, . . . , Xn] → k[Y1, . . . , Yn]

sending the ideal I = (f1, . . . , fm) in k[X1, . . . , Xn] to the ideal J = (h1, h2, . . . , hm) in k[Y1, . . . , Yn]
given by the rows of C.

Now, we can observe that from the shape of the reduced column echelon form, it is easy to
deduce that J = (Y1, . . . , Yr) where r is the number of non-zero columns in C which is again
equal to the rank of A since column rank and row rank of a matrix are equal. Hence, we conclude
that

HPJ(s) =
1

(n− r)!
sn−r + . . .

Alternatively, we can observe that since none of the hi involve the variables Yr+1, . . . , Yn, we
conclude that J ∩ k[Yr+1, . . . , Yn] = {0}, and we also have to show that this is the maximal
number of variables that J avoids but this again follows from inspecting the reduced column
echelon matrix. In either way, we deduce that

degHPJ = n− r

It looks as if we are done, but now we have to pay back our debt since column operations changed
the ideal I (as well as the null space of A). However, since we made a linear change of variables
there is a k-linear bijection C(I)≤s and C(J)≤s. Therefore, it follows that

HFI(s) = HFJ(s)

Hence, we finally conclude that
degHPI = n− r

Bonus question: Let us consider a non-linear isomorphism between polynomial rings. For
example, consider the ring isomorphism k[X1, X2] → k[Y1, Y2] given by X1 → Y1 + Y r

2 and
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X2 → Y2 for some r ∈ N. Since this is clearly a ring isomorphism, it sends any ideal I of
k[X1, X2] to an ideal J of k[Y1, Y2] and induces an isomorphism of rings

k[X1, X2]/I ≃ k[Y1, Y2]/J

However, it is not a degree preserving isomorphism. Hence, C(I)≤s may very well be not
isomorphic to C(J)≤s. Can you construct an example of an ideal such that under such an
isomorphism

HFI(s) ̸= HFJ(s)

What about degHPI(s) and degHPJ(s) ?

7) Let I = (x2+y+z−1, x+y2+z−1, x+y+z2−1) be the ideal in C[x, y, z]. Find a Gröbner
basis for I with respect to lexicographic order x > y > z, and determine V (I) explicitly using
the Gröbner basis.

▷ Discussion

We can use Lex order and compute the reduced Gröbner basis

I = (z6 − 4z4 + 4z3 − z2, 2yz2 + z4 − z2, y2 − y − z2 + z, x+ y + z2 − 1)

Since the first polynomial only depends on z, we can solve that and then use the others to solve
for x and y. (This is what the Lex order is good for.)

When you work it out, you should get the folllowing 5 solutions.

(1, 0, 0), (0, 1, 0), (0, 0, 1), (−1 +
√
2,−1 +

√
2,−1 +

√
2), (−1−

√
2,−1−

√
2,−1−

√
2)

On the other hand, we have
dimkk[x, y, z]/I = 8

To see this, we use the GLex order and use Macaulay’s lemma to say thatHFI(s) = HFin(I)(s) =
|C(in(I))|<s

It turns out that with respect to GLex order, we have that the original description is already a
Gröbner basis:

I = (x2 + y + z − 1, x+ y2 + z − 1, x+ y + z2 − 1)

Thus, with respect to GLex, we have

in(I) = (x2, y2, z2),

from which it is easy to see that C(in(I)) is generated as a k-vector space by {1, x, y, z, xy, xz, yz, xyz}.
Hence, for s >= 3, HFI(s) = 8. Note that we also have HFI(0) = 1, HFI(1) = 4, HFI(2) = 7.
So, the Hilbert polynomial HPI(s) is constant and equal to 8.

This is all fine and correct. On the other hand, we can also look at in(I) with respect to the
Lex order. Then we have
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in(I) = (x, y2, yz2, z6)

from which we see that C(in(I)) is generated as a k-vector space {1, y, z, yz, z2, z3, z4, z5}. This
is also 8, as it should! Because this is what the second part of Theorem 4.8 in lecture notes gives
us. (Note that Theorem 4.8 is valid for any monomial ordering.)

On the other hand, since Macaulay’s lemma is not valid for the Lex order. If we use the Lex
order, we would get the wrong Hilbert function. Indeed, this gives us HFI(0) = 1, HFI(1) =
3, HFI(2) = 5, HFI(3) = 6, HFI(4) = 7, HFI(s) = 8 for s >= 5. As you can observe this
does not agree with the above (correct) computation of Hilbert function. (Recall that Hilbert
function does not depend on the monomial ordering.)

So we have 5 = |V (I)| < 8 = dimkk[x, y, z]/I. In general, when V (I) is finite, one has that
|V (I)| = dimkk[X1, .., Xs]/I if I is radical (a fact that you can prove using Nullstellensatz,
assuming k is algebraically closed here). So, this means that I = (x2 + y + z − 1, x + y2 + z −
1, x+y+z2−1) is not a radical ideal. We can also confirm this with Macaulay 2 as follows:

R= QQ[x,y,z, w,MonomialOrder => GLex ]

I = ideal (x^2+y+z-1, x+y^2+z-1,x+y+z^2-1)

I == radical I

which outputs false! Fun!

So, what’s an element in
√
I, that is not in I? This is where we can apply Nullstellensatz.

√
I

is the ideal of functions in k[x, y, z] that vanish on our 5 points. It looks like it is easy to write
down some functions that vanish on our 5 points. Here is one:

xy − yz

So, xy− yz is in
√
I but is it in I? We are in luck, we already have a Gröbner basis at hand for

I. We need to divide xy − yz by {x2 + y + z − 1, x + y2 + z − 1, x + y + z2 − 1} and see if we
get a 0 remainder. But, we don’t! Because, the LT (xy − yz) = xy which is not divisble by x2

or y2 or z2. Happy.

If you really wanted to finish this off, you can also find a Gröbner basis for
√
I. I can’t resist

the temptation to enter this to Macaulay 2.

R= QQ[x,y,z, MonomialOrder => Lex ]

I = ideal (x^2+y+z-1, x+y^2+z-1,x+y+z^2-1)

gens gb radical I

which gives me
√
I = (z4 + z3 − 3z2 + z, 2yz + z3 − z, y2 − y − z2 + z, x+ y + z2 − 1)

and
in(

√
I) = (z4, yz, y2, x)

Hence, C(in(
√
I)) is generated as k-vector space 1, y, z, z2, z3 which has 5 elements. Thus, as

we claimed:
|V (I)| = dimkk[x, y, z]/

√
I.
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