Homework I Solutions

2) Show that if a prime ideal $\mathfrak{p}=I \cap J$ for ideals I and J, then $\mathfrak{p}=I$ or $\mathfrak{p}=J$.
\triangleright Assume that there exist an $x \in I \backslash(I \cap J)$ and a $y \in J \backslash(I \cap J)$. Then, we have

$$
x y \in I J \subset I \cap J=\mathfrak{p}
$$

which is a contradiction as this implies x or y is in $\mathfrak{p}=I \cap J$ since \mathfrak{p} is a prime ideal.
7) Let k be an infinite field, and $f \in k\left[X_{1}, \ldots, X_{n}\right]$. Show that $f=0$ if and only if $f\left(x_{1}, \ldots, x_{n}\right)=$ 0 for all $\left(x_{1}, \ldots, x_{n}\right) \in k^{n}$. Give a counter-example to the statement when $k=\mathbb{F}_{2}$ (finite field with 2 elements).
\triangleright Clearly, $f(X)=X^{2}-X$ vanishes for all $X \in \mathbb{F}_{2}$ but $f \neq 0$. So, let's assume k is an infinite field.

If $f=0$, it follows trivially that $f\left(x_{1}, \ldots, x_{n}\right)=0$ for all $\left(x_{1}, \ldots, x_{n}\right) \in k^{n}$. Conversely, suppose $f\left(x_{1}, \ldots, x_{n}\right)=0$ for all $\left(x_{1}, \ldots, x_{n}\right) \in k^{n}$. We want to show that $f=0$. We argue by induction. The case $n=1$ is elementary: a degree d polynomial in $k[X]$ can have at most d roots, since for every root a, we must have that $(X-a) \mid f(X)$. Since the filed k is infinite, it follows that if $f(x)=0$ for all $x \in k$, then $f=0$. Suppose now that the statement is true for $n-1$. Given a polynomial $f \in k\left[X_{1}, \ldots, X_{n}\right]$, write it as $f\left(X_{1}, \ldots, X_{n}\right)=\sum_{i=1}^{s} f_{i}\left(X_{1}, \ldots, X_{n-1}\right) X_{n}^{i}$ for polynomials $f_{i}\left(X_{1}, \ldots, X_{n-1}\right) \in k\left[X_{1}, \ldots, X_{n-1}\right]$. Suppose that $f \neq 0$, then there exists an i such that $f_{i} \neq 0$. By induction hypothesis, there exists $\left(a_{1}, \ldots, a_{n-1}\right) \in k^{n-1}$ such that $f_{i}\left(a_{1}, \ldots, a_{n-1}\right) \neq 0$. Then, the polynomial $g(X) \in k[X]$ defined by $g(X)=f\left(a_{1}, \ldots, a_{n-1}, X\right)$ is a nonzero polynomial. So, it can only have finitely many zeros (by the $n=1$ case). This contradicts the assumption that $f\left(x_{1}, \ldots, x_{n}\right)=0$ for all $\left(x_{1}, \ldots, x_{n}\right)$.
8) Let $\mathfrak{p} \subset \mathbb{Z}[X]$ be a prime ideal. Suppose $\mathfrak{p} \neq \mathbb{Z}[X]$ or (0). Show that $\mathfrak{p} \cap \mathbb{Z}$ is a prime ideal in \mathbb{Z}. Thus, $\mathfrak{p} \cap \mathbb{Z}=(p)$ where $p=0$ or p is a prime number.
(i) Suppose $\mathfrak{p} \cap \mathbb{Z}=(0)$, then $\mathfrak{p}=(f)$ where $f \in \mathbb{Z}[X]$ is an irreducible polynomial.
(ii) Suppose $\mathfrak{p} \cap \mathbb{Z}=(p)$ with p a prime number. Then, $\mathfrak{p}=(p, f)$ where $f=0$ or $f \in$ $\mathbb{Z}[X]$ is a monic polynomial (leading coefficient is one) and its $\bmod p$ reduction $\bar{f} \in \mathbb{F}_{p}[X]$ is irreducible.
\triangleright We note that $\mathfrak{p} \cap \mathbb{Z}$ is the preimage of the prime ideal \mathfrak{p} under the ring homomorphism $\mathbb{Z} \rightarrow \mathbb{Z}[X]$, hence is a prime ideal.
(i) Suppose $\mathfrak{p} \cap \mathbb{Z}=(0)$. Thus, \mathfrak{p} consists of zero and polynomials with no constant terms. Let f be a non-zero polynomial in \mathfrak{p} of minimal degree. We may assume f is primitive: Otherwise
$f=c f^{\prime} \in \mathfrak{p}$ for some $c \in \mathbb{Z}$, but $c \notin \mathfrak{p}$, hence $f^{\prime} \in \mathfrak{p}$. So, let us pick f to be primitive. It is also irreducible since otherwise, there would be a polynomial of smaller degree in \mathfrak{p}. We want to show that $\mathfrak{p}=(f)$. Consider another element $g \in \mathfrak{p}$, by viewing f and g as in $\mathbb{Q}[X]$, we can consider division with remainder

$$
g=q f+r
$$

for $q, r \in \mathbb{Q}[X]$ with $\operatorname{deg}(r)<\operatorname{deg}(f)$. Clearing the denominators by multiplying with an appropriate $c \in \mathbb{Q}$, we can write

$$
c r=c q f-c g \in \mathbb{Z}[X]
$$

But, since $f, g \in \mathfrak{p}$, this implies cr $\in \mathfrak{p}$ which contradicts to minimality of $\operatorname{deg}(f)$ unless $r=0$. Hence, we have

$$
g=q f
$$

since $f, g \in \mathbb{Z}[X]$, and f is primitive, it follows from Gauss lemma that $q \in \mathbb{Z}[X]$, hence $g \in(f) \subset \mathbb{Z}[X]$. Thus, we proved that $\mathfrak{p}=(f)$.
(ii) Let $\mathfrak{p} \cap \mathbb{Z}=(p)$. If $(p)=\mathfrak{p}$, then there is nothing to prove. Otherwise, we have $(p) \subsetneq \mathfrak{p} \subsetneq \mathbb{Z}[X]$. Now, let us observe that the reduction modulo p of coefficients induces a ring isomorphism

$$
\mathbb{Z}[X] /(p) \cong \mathbb{F}_{p}[X]
$$

Under this ring isomorphism the image of \mathfrak{p} goes to a non-zero proper prime ideal $\overline{\mathfrak{p}}$. As $\mathbb{F}_{p}[X]$ is a PID, we have $\overline{\mathfrak{p}}=(\bar{f})$ for some irreducible polynomial $\bar{f} \in \mathbb{F}_{p}[X]$ which we can take to be monic (since \mathbb{F}_{p} is a field). Let $f \in \mathfrak{p} \subset \mathbb{Z}[X]$ be an arbitrary lift of \bar{f} which is monic. We claim that $\mathfrak{p}=(p, f)$. We have $(p, f) \subset \mathfrak{p}$. Next, we see that there is a ring isomorphism

$$
\mathbb{Z}[X] /(p, f) \cong \mathbb{F}_{p}[X] /(\bar{f})
$$

Indeed, as before the mod p reduction of coefficients $\mathbb{Z}[X] \rightarrow \mathbb{F}_{p}[X]$ induces the ring map and if an element $g \in \mathbb{Z}[X]$ maps to (\bar{f}), we have $\bar{g}=\overline{f k}$ for some $k \in \mathbb{Z}$ but this means $g-f k \in(p)$. Now, $\mathbb{F}_{p}[X] /(\bar{f})$ is a field, hence so is $\mathbb{Z}[X] /(p, f)$. Therefore (p, f) is a maximal ideal, hence it must be that $(p, f)=\mathfrak{p}$.

Figure 1: Mumford's picture of prime ideals in $\mathbb{Z}[X]$

