This paper is also taken for the relevant examination for the Associateship.

MATH70061

Commutative Algebra (Solutions)

Setter's signature	Checker's signature	Editor's signature

1. (a) It is clear that $f\left(a_{i}\right)=b_{i}$. Consider any other polynomial $h(X)$ such that $h\left(a_{i}\right)=b_{i}$. Now, the difference $f(X)-h(X)$ vanishes on a_{i}, hence we can write

$$
f(X)-h(X)=\left(X-a_{1}\right)\left(X-a_{2}\right) \ldots\left(X-a_{n}\right) g(X)
$$

If both $f(X)$ and $h(X)$ are of degree $\leq n-1$, then $g(X)=0$, hence $f(X)=h(X)$.
(b) Consider $p(X, Y) \in \mathcal{I}(V)$ divide it by $Y-f(X)$ and $g(X)$ with remainder, we get

$$
p(X, Y)=h_{1}(X, Y)(Y-f(X))+h_{2}(X, Y) g(X)+r(X, Y)
$$

Now, none of the terms of $r(X, Y)$ are divisible by $Y=L T(Y-f(X))$ and $X^{n}=L T(g(X)$ hence $r(X, Y)=r(X) \in k[X]$ a polynomial of degree $\leq n-1$. But, $r\left(a_{i}\right)=0$ for all $i=1, \ldots, n$, hence $r(X)=0$.

7, B
(c) We compute the S-polynomial

$$
S(Y-f(X), g(X))=X^{n}(Y-f(X))-Y g(X)=-X^{n} f(X)-Y h(X)
$$

where $h(X)=g(X)-X^{n}$. Now, we divide by $Y-f(X), g(X)$, we get

$$
\begin{aligned}
S(Y-f(X), g(X)) & =(-h(X))(Y-f(X))-X^{n} f(X)-h(X) f(X) \\
& =(-h(X))(Y-f(X))-f(X) g(X)
\end{aligned}
$$

so the remainder is zero.
2. (a) Write Γ for the set of ideals of A which are not finitely generated. If $\Gamma \neq \emptyset$, let $\mathcal{T} \subset \Gamma$ be a totally ordered set, then the ideal $\mathfrak{b}=\bigcup_{\lambda \in \mathcal{T}} I_{\lambda}$ is in Γ. Indeed, if $\mathfrak{b}=\left(x_{1}, \ldots, x_{s}\right)$, then $\left\{x_{1}, \ldots, x_{s}\right\} \subset I_{\lambda}$ for some λ, so that $\mathfrak{b} \subset I_{\lambda}$ which implies $\mathfrak{b}=I_{\lambda}$ is finitely generated, contradiction. Hence, \mathfrak{b} is an upperbound for \mathcal{T}. By Zorn's lemma Γ contains a maximal element I. Then I is not a prime ideal, so there are elements $x, y \in A$ with $x \notin I, y \notin I$ but $x y \in I$. Now, $I+(y)$ is bigger than I, and hence is finitely generated, so that we can choose $u_{1}, \ldots, u_{n} \in I$ such that $I+(y)=\left(u_{1}, \ldots, u_{n}, y\right)$. Moreover $I: y=\{a \in A: a y \in I\}$ contains x, and is thus bigger than I, so it has a finite system of generators v_{1}, \ldots, v_{m}. Finally, it is easy to check that $I=\left(u_{1}, \ldots, u_{n}, v_{1} y, v_{2} y, \ldots, v_{m} y\right)$, hence $I \notin \Gamma$, which is a contradiction.
(b) Write Γ for the set of ideals of A that are not principal. Suppose Γ is non-empty. Let $\mathcal{T} \subset \Gamma$ be a totally ordered set, then the ideal $\mathfrak{b}=\bigcup_{\lambda \in \mathcal{T}} I_{\lambda}$ is in Γ. Indeed, if $\mathfrak{b}=(x)$ for some $x \in A$, then $x \in I_{\lambda}$ for some λ, so that $\mathfrak{b} \subset I_{\lambda}$ which implies $\mathfrak{b}=I_{\lambda}$ is principal, contradiction. Hence, \mathfrak{b} is an upperbound for \mathcal{T}. By Zorn's lemma, the set Γ has a maximal element, call it I. By assumption I is not prime, so there exists $x, y \in A$ with $x \notin I, y \notin I$ but $x y \in I$. Now, $I+(y)$ is bigger than I and so it is principal, let $I+(y)=(a)$. Similarly, $I: y$ contains I and x hence is also principal, say $I: y=(b)$. We claim that $I=(a b)$. Indeed, let $c \in I \subset I+(y)$, then $c=a m$ for some $m \in I$. Then, $m \in I: y$, hence $m=b n$ for some n, hence $c=a b n$, which shows $I \subset(a b)$. Conversely, if $b \in I: y$ implies $b y \in I$ so, $b(a) \subset I$, hence $a b \in I$. It follows that I is principal, which is a contradiction.
3. (a) For a ring A, the Krull dimension is defined to be

$$
\operatorname{dim} A:=\operatorname{dimSpec}(A)=\sup \left\{n \geq 0: \exists \mathfrak{p}_{0} \subsetneq \mathfrak{p}_{1} \subsetneq \mathfrak{p}_{2} \ldots \subsetneq \mathfrak{p}_{n} \subsetneq A \text { with } \mathfrak{p}_{i} \text { prime ideal }\right\}
$$

(b) $\mathbb{Z}[i]$ is isomorphic to $\mathbb{Z}[x] /\left(x^{2}+1\right)$ hence is an integral extension of \mathbb{Z}. Therefore, by Cohen-Seidenberg theorems, $\operatorname{dim} \mathbb{Z}[i]=\operatorname{dim} \mathbb{Z} . \operatorname{In} \mathbb{Z}$ every non-zero prime ideal is maximal and is given by (p) for some prime p, hence the longest chain of prime ideals are all of the form

$$
(0) \subsetneq(p)
$$

for some prime number p. Therefore, $\operatorname{dim} \mathbb{Z}[i]=\operatorname{dim} \mathbb{Z}=1$.
(c) Let $x_{1}, \ldots, x_{n} \in \mathfrak{m}$ such that $\bar{R}=R /\left(x_{1}, \ldots, x_{n}\right)$ is Artinian. Suppose that there exists a prime ideal $\mathfrak{p} \subset R$ such that

$$
\left(x_{1}, \ldots, x_{n}\right) \subsetneq \mathfrak{p} \subsetneq \mathfrak{m}
$$

Then, in \bar{R}, we would have a chain

$$
\mathfrak{p} /\left(x_{1}, \ldots, x_{n}\right) \subsetneq \mathfrak{m} /\left(x_{1}, \ldots, x_{n}\right)
$$

of prime ideals, which implies $\operatorname{dim} \bar{R} \geq 1$, hence \bar{R} cannot be Artinian, contradiction. Therefore, \mathfrak{m} is a minimal prime ideal containing $\left(x_{1}, \ldots, x_{n}\right)$ then it follows from Krull's Height Theorem that $\operatorname{dim} R=\mathrm{htm} \leq n$.
(d) There are finitely many minimal prime ideals in a Noetherian ring, these are all the prime ideals of height 0 and we can view them as containing the empty set. Suppose now by induction that for $0 \leq k<n$, we have constructed elements $x_{1}, \ldots, x_{k} \in \mathfrak{m}$ such that every minimal prime ideal containing x_{1}, \ldots, x_{k} has height k. Let $\mathfrak{q}_{1}, \ldots, \mathfrak{q}_{s}$ be these minimal primes containing $\left(x_{1}, \ldots, x_{k}\right)$ with height k. We see that $\mathfrak{m} \nsubseteq \bigcup_{i=1}^{s} \mathfrak{q}_{i}$ since, by prime avoidance, this would imply $\mathfrak{m} \subset \mathfrak{q}_{i}$ for some i but height of \mathfrak{q}_{i} is $k<n=h(\mathfrak{m})$ which is a contradiction. Hence, we can find $x_{k+1} \in \mathfrak{m} \backslash \bigcup_{i=1}^{s} \mathfrak{q}_{i}$. Now, let \mathfrak{p} be a minimal prime ideal containing $\left(x_{1}, \ldots, x_{k}, x_{k+1}\right)$. We have $h(\mathfrak{p}) \leq k+1$ by Krull's height theorem. On the other hand, since $\mathfrak{p} \supset\left(x_{1}, \ldots, x_{k}\right)$ and \mathfrak{q}_{i} are minimal primes containing $\left(x_{1}, \ldots, x_{k}\right)$, we have $\mathfrak{p} \supset \sqrt{\left(x_{1}, \ldots, x_{k}\right)}=\mathfrak{q}_{1} \cap \ldots \cap \mathfrak{q}_{s} \supset \mathfrak{q}_{1} \ldots \mathfrak{q}_{s}$. Hence $\mathfrak{p} \supset \mathfrak{q}_{i}$ for some i, hence $h(\mathfrak{p})=k+1$. Now, by induction, we can continue this until we produce elements x_{1}, \ldots, x_{n}. The minimal prime ideal containing $\left(x_{1}, \ldots, x_{n}\right)$ has height n, and thus has to coincide with \mathfrak{m}.
4. (a) Let $I=\left(X^{2}+Y^{2}-1\right) \subset \mathbb{C}[X, Y]$. By Hilbert's Nullstellensatz, we have $\mathcal{I}(\mathcal{V}(I))=\sqrt{I}$. But, $X^{2}+Y^{2}-1$ is an irreducible polynomial, hence I is prime, therefore $\sqrt{I}=I$. So, the polynomials vanishing on $\mathcal{V}(I)$ are exactly given by I, hence are of the form $P(X, Y)\left(X^{2}+Y^{2}-1\right)$ where $P(X, Y) \in \mathbb{C}[X, Y]$ is an arbitrary polynomial.
(b) (i) Since k is not algebraically closed, we can find a non-trivial polynomial $p(X) \in k[X]$ with no zero. Write

$$
p(X)=a_{n} X^{n}+a_{n-1} X^{n-1}+\ldots+a_{1} X+a_{0}
$$

Now, consider the homogenization $\phi_{2}(X, Y) \in k[X, Y]$ given by

$$
\phi_{2}(X, Y)=a_{n} X^{n}+a_{n-1} X^{n-1} Y+\ldots+a_{1} X Y^{n-1}+a_{0} Y^{n}
$$

If $\phi_{2}(X, Y)$ has a root with $Y \neq 0$, then we would get a root of $\phi_{2}(X, 1)=$ $p(X)$ which is not the case. Therefore, the only zero of $\phi_{2}(X, Y)$ is at $(0,0)$. Now, we define recursively

$$
\phi_{m}\left(X_{1}, \ldots, X_{m}\right)=\phi_{2}\left(\phi_{m-1}\left(X_{1}, \ldots, X_{m-1}\right), X_{m}\right)
$$

It is clear that the only zero of ϕ_{m} is at $(0, \ldots, 0) \in k^{m}$ as required.
(ii) Consider the maximal ideal $(X, Y) \in \mathbb{C}[X, Y]$, the variety associated to this ideal is the point $(0,0) \in \mathbb{C}^{2}$. Suppose $(0,0)=\mathcal{V}((f))$ for $f \in \mathbb{C}[X, Y]$, then by Nullstellensatz, we would have $\sqrt{(X, Y)}=(X, Y)=\sqrt{(f)}$. Thus, there exists, n, m such that f divides X^{n} and Y^{m}, but this implies f has to be constant (since $\mathbb{C}[X, Y]$ is a UFD) which is a contradiction.
(c) By Zariski's lemma the field $\mathbb{R}[X, Y] / \mathfrak{m}$ is a finite field extension of \mathbb{R}. There are two such fields \mathbb{R} and \mathbb{C}. One can take (X, Y) and $\left(X^{2}+1, Y\right)$ as examples of maximal ideals such that $\mathbb{R}[X, Y] / \mathfrak{m}$ is \mathbb{R} and \mathbb{C}. In the first case the isomorphism is given by sending X and Y to 0 and in the second case, X to i and Y to 0 .
5. (a) (i) A valuation ring is an integral domain R such that for all $x \in K \backslash\{0\}$, where K is the field of fractions of R, either $x \in R$ or $x^{-1} \in R$.
(ii) A valuation on K is given by map $\nu: K \rightarrow \Gamma \cup\{\infty\}$, where Γ is an ordered abelian group, satisfying
(1) $\nu(x y)=\nu(x)+\nu(y)$, for all $x, y \in K$,
(2) $\nu(x+y) \geq \min \{\nu(x), \nu(y)\}$,
(3) $\nu(x)=\infty$ if and only if $x=0$.

The valuation ring associated to ν is defined by $R=\{x \in K: \nu(x) \geq 0\} . R$ is called a discrete valuation ring (DVR) if $\Gamma=\mathbb{Z} \cup\{\infty\}$.
(iii) If $x \in K$ satisfies an equation $x^{n}+a_{1} x^{n-1}+\ldots+a_{n}=0$ with $a_{i} \in R$. Thus, we have $\nu\left(a_{i}\right) \geq 0$. Now, if $\nu(x)<0$, then we have $\nu\left(x^{n}\right)=n \nu(x)<$ $\nu\left(a_{i} x^{n-i}\right)=(n-i) \nu(x)+\nu\left(a_{i}\right)$ for all $i=1, \ldots, n$. Hence, this violates condition (2) of the valuation.
(b) (i) Every element of $K=\mathbb{C}(X, Y)$ we can express is as $Y^{n} \frac{f}{g}$ for $f, g \in \mathbb{C}[X, Y]$ with $n \in \mathbb{Z}$ and Y not dividing f or g. The elements that are in R correspond precisely to the ones with $n \geq 0$. Hence, it is clear that if $x \in K \backslash R$, then $x^{-1} \in R$. Equivalently, one could define a valuation by letting $\nu\left(Y^{n} \frac{f}{g}\right)=n$.
(ii) Both $\frac{X}{Y}$ and $\frac{Y}{X}$ are not in R, hence this is not a valuation ring.
(c) Any ring R^{\prime} with $R \subset R^{\prime} \subset K$ is given by $R_{\mathfrak{p}}$ for some prime ideal $\mathfrak{p} \subset R$. But, R is a local ring and an integral domain of dimension 1 , hence the only prime ideals it has are (0) and \mathfrak{m} (the maximal ideal in R), and localisation on these ideals gives R and K. So, R is maximal as a subring of K.
Conversely, suppose R is maximal proper subring of K. The integral closure of R is not the whole of K (as this would imply R is a field), hence R is integrally closed. On the other hand, let $x \in K \backslash R$. Then we have $R[x]=K$, so $x^{-1} \in R[x]$. Hence, we can write

$$
x^{-1}=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}, \quad a_{i} \in R
$$

which implies

$$
x^{-n-1}-a_{0} x^{-n}-\ldots-a_{n}=0
$$

Thus, x^{-1} is integral over R, hence $x^{-1} \in R$. Thus R is a valuation ring. It is of dimension 1 , since otherwise we would have a prime ideal $\mathfrak{p} \neq(0), \mathfrak{m}$ and we would have $R \subsetneq R_{\mathfrak{p}} \subsetneq K$.

Review of mark distribution:

Total A marks: 35 of 35 marks
Total B marks: 31 of 31 marks
Total C marks: 20 of 20 marks
Total D marks: 14 of 14 marks
Total marks: 100 of 100 marks
Total Mastery marks: 0 of 0 marks

