Computing Symplectic Cohomology via Mirror Symmetry

Yankı Lekili

based on joint work with Kazushi Ueda

Symplectix
29 May 2020

An example computation

Consider a Kleinian singularity

$$
\mathbf{w}(x, y, z)= \begin{cases}x^{n+1}+y^{2}+z^{2} & A_{n} \\ x^{n-1}+x y^{2}+z^{2} & D_{n} \\ x^{4}+y^{3}+z^{2} & E_{6} \\ x^{3}+x y^{3}+z^{2} & E_{7} \\ x^{5}+y^{3}+z^{2} & E_{8}\end{cases}
$$

$V=\mathbf{w}^{-1}(1)$ Milnor fiber with its Liouville structure
Theorem. (L. - Ueda)

$$
\mathrm{SH}^{*}(V)= \begin{cases}\mathbb{C}^{\mu} & \text { if } * \leq 2 \\ 0 & \text { otherwise }\end{cases}
$$

where $\mu=n$ for A_{n} and D_{n} and $6,7,8$ for E_{6}, E_{7}, E_{8}.

Free loop spaces

-Good reference: Latschev-Oancea

Fix Q a smooth manifold of dimension n.
Let $\mathcal{L} Q:=\operatorname{Map}\left(S^{1}, Q\right)$ the free loop space of Q.
Clasically, we have the energy functional $E: \mathcal{L} Q \rightarrow \mathbb{R}$ given by

$$
E(\gamma)=\int_{S^{1}}\|\dot{\gamma}(t)\|^{2}
$$

whose critical points are the closed geodesics in Q.

This satisfies Palais-Smale condition, and it can be used to compute the homology of the free loop space (see Milnor, Bott).

Free loop spaces

-Free loop space of S^{2}

$$
\mathcal{L} S^{2} \simeq S^{2} \cup \mathbb{R} P_{1}^{3} \cup \mathbb{R} P_{3}^{3} \cup \mathbb{R} P_{5}^{3} \cdots \ldots
$$

Cohen-Jones-Yan used Leray-Serre spectral sequence to obtain

$$
H_{2-*}\left(\mathcal{L} S^{2}\right)=\Lambda(x) \otimes \mathbb{Z}[y, z] /\left(y^{2}, x y, 2 y z\right)
$$

with $|x|=1,|y|=2,|z|=-2$.

$$
\begin{aligned}
& H_{0} \otimes \mathbb{C}=\mathbb{C} \cdot y \\
& H_{1} \otimes \mathbb{C}=\mathbb{C} \cdot x \\
& H_{2} \otimes \mathbb{C}=\mathbb{C} \cdot 1 \\
& H_{3} \otimes \mathbb{C}=\mathbb{C} \cdot x z \\
& H_{4} \otimes \mathbb{C}=\mathbb{C} \cdot z
\end{aligned}
$$

$$
H_{1+2 i} \otimes \mathbb{C}=\mathbb{C} \cdot x z^{i+1} \text { and } H_{2+2 i} \otimes \mathbb{C}=\mathbb{C} \cdot z^{i}
$$

Free loop spaces

-Burghelea-Fiedorowicz, Goodwillie, ...
$\Omega Q:=\operatorname{Map}_{*}\left(S^{1}, Q\right)$ based loop space of Q.
$C_{-*}(\Omega Q)$ is a DG-algebra (Pontryagin product).

Elaborating on the fibration $\Omega Q \rightarrow \mathcal{L} Q \rightarrow Q$, one obtains

$$
H_{n-*}(\mathcal{L} Q)=H H^{*}\left(C_{-*}(\Omega Q), C_{-*}(\Omega Q)\right)
$$

For $Q=S^{2}$, we have $C_{-*}\left(\Omega S^{2}\right) \simeq \mathbb{C}\left\langle x^{\vee}\right\rangle$ with $\left|x^{\vee}\right|=-1$.

Free loop spaces

-Koszul duality, Jones, ...
For Q simply connected, $C_{-*}(\Omega Q)$ is (derived) Koszul dual to $C^{*}(Q)$.

$$
H_{n-*}(\mathcal{L} Q)=H^{*}\left(C^{*}(Q), C^{*}(Q)\right)
$$

For $Q=S^{2}, C^{*}(Q)$ is quasi-isomorphic to $\mathbb{C}[x] /\left(x^{2}\right)$ with $|x|=2$.
Koszul bimodule complex has generators $\left(x^{\vee}\right)^{i} \otimes 1$ and $\left(x^{\vee}\right)^{i} \otimes x$ for $i \geq 0$. The differential can be computed as:

$$
\begin{aligned}
& d\left(\left(x^{\vee}\right)^{i} \otimes 1\right)=\left(1+(-1)^{i+1}\right)\left(x^{\vee}\right)^{i+1} \otimes x \\
& d\left(\left(x^{\vee}\right)^{i} \otimes x\right)=0
\end{aligned}
$$

(cf. Etgü-L. - Koszul duality patterns in Floer theory G\&T 2017)

Symplectic Cohomology

Given a Liouville manifold V, one defines symplectic cohomology

$\mathrm{SH}^{*}(V)$

as a Hamiltonian Floer cohomology group associated with a time-dependent Hamiltonian with quadratic growth

A generalization of Quantum Cohomology to non-compact symplectic manifolds

Very roughly, in addition to Morse critical points capturing $H^{*}(V)$, there are generators corresponding to Reeb orbits along ∂V.

Symplectic Cohomology

-Viterbo isomorphism

Generally speaking, it is hard to compute $\mathrm{SH}^{*}(V)$ explicitly. However, for $V=T^{*} Q$, we have Viterbo isomorphism

$$
\begin{equation*}
\mathrm{SH}^{*}\left(T^{*} Q\right)=\mathrm{H}_{n-*}(\mathcal{L} Q) \tag{1}
\end{equation*}
$$

Thus, for example, we can use this to compute $\operatorname{SH}^{*}\left(T^{*} S^{2}\right)$.

* Refinements of (1) exist. It should hold in all glory as a quasi-isomorphism of $B V_{\infty}$-algebras.

Symplectic Cohomology

-Morse-Bott spectral sequence
The Milnor fiber of $x^{4}+y^{4}+z^{4}$ can be compactified to a quartic K3 surface in \mathbb{P}^{3} by adding a smooth divisor of genus 3 .

	\mathbb{C}^{6}	0	0	0	\vdots
	\mathbb{C}	\mathbb{C}	0	0	9
	0	\mathbb{C}^{6}	0	0	\vdots
0	\mathbb{C}^{6}	0	0	7	
	0	\mathbb{C}	\mathbb{C}	0	6
0	0	\mathbb{C}^{6}	0	5	
0	0	\mathbb{C}^{6}	0	4	
	0	0	\mathbb{C}	0	3
	0	0	0	\mathbb{C}^{27}	2
	0	0	0	0	1
	0	0	0	\mathbb{C}	0
p	\cdots	-2	-1	0	

We immediately conclude that $\mathrm{SH}^{0}=\mathbb{C}, \mathrm{SH}^{1}=0, \mathrm{SH}^{2}=\mathbb{C}^{28}$, $\mathrm{SH}^{3}=\mathbb{C}^{6}$, and with a bit more work $\mathrm{SH}^{i}=\mathbb{C}^{7}$ for $i>3$.

Symplectic Cohomology as Hochschild Cohomology

 -Wrapped Fukaya categoryLet $\mathcal{W}(V)$ denote the wrapped Fukaya category. This has objects exact Lagrangians L with controlled behaviour at infinity. In analogy with $\mathrm{SH}^{*}(V)$

$$
\operatorname{hom}\left(L_{1}, L_{2}\right)
$$

has generators not only the intersection points between L_{1} and L_{2} but also Reeb chords from L_{1} to L_{2}. The following is a (vast) generalization Burghelea-Fiedorowicz-Goodwillie result.

$$
\mathrm{SH}^{*}(V)=\mathrm{HH}^{*}(\mathcal{W}(V), \mathcal{W}(V))
$$

This is a culmination of many people's work. Notably, Bourgeois-Ekholm-Eliashberg, Abouzaid, Ganatra, Chantraine-Dimitroglou Rizell-Ghiggini-Golovko,...

Problems

- How do we compute $\mathcal{W}(V)$?
- How do we compute $\mathrm{HH}^{*}(\mathcal{W}(V), \mathcal{W}(V))$?

BEE surgery formula

Let Λ be a Legendrian on the boundary of a subcritical Liouville manifold. If $V=V_{\Lambda}$ the result of Legendrian surgery on Λ, then

$$
\mathcal{W}(V)=\operatorname{Perf}\left(C E^{*}(\Lambda)\right)
$$

where $C E^{*}(\Lambda)$ is the Chekanov-Eliashberg dg-algebra of Λ.

* This fundamental result is due to Bourgeois-Ekholm-Eliashberg (G\&T 2012) but this particular formulation of their result is easier to extract from Ekholm-L, where an extension of this result to partially wrapped Fukaya categories was given.

Chekanov-Eliashberg algebra for plumbings

Lagrangian projection of a Legendrian for D_{n} Milnor fiber.

Ginzburg algebra

\mathscr{G}_{Q}^{n} of a quiver Q is a model of the n-Calabi-Yau completion of the path algebra A_{Q}. Consider the path algebra of the graded quiver \bar{Q} with same vertices as Q and arrows consisting of

- the original arrows $g \in Q_{1}$ in degree 1 ,
- the opposite arrows g^{*} for each arrow $g \in Q_{1}$ in degree $1-n$,
- loops h_{v} at each vertex $v \in Q_{0}$ in degree $1-n$, equipped with the differential d given by

$$
\begin{equation*}
d g=d g^{*}=0 \text { and } d h=\sum_{g \in Q_{1}} g^{*} g-g g^{*} \tag{2}
\end{equation*}
$$

where $h=\sum_{v \in Q_{0}} h_{v}$.
Theorem. (Etgï-L., Ekholm-L.) For a simple singularity of Dynkin type Q,

$$
C E^{*}(\Lambda) \simeq \mathscr{G}_{Q}^{n}
$$

Invertible polynomials

A weighted homogeneous polynomial $\mathbf{w} \in \mathbb{C}\left[x_{1}, \ldots, x_{n+1}\right]$ with an isolated critical point at the origin is invertible if there is an integer matrix $A=\left(a_{i j}\right)_{i, j=1}^{n+1}$ with non-zero determinant such that

$$
\begin{equation*}
\mathbf{w}=\sum_{i=1}^{n+1} \prod_{j=1}^{n+1} x_{j}^{a_{i j}} \tag{3}
\end{equation*}
$$

The transpose of \mathbf{w} is defined as

$$
\begin{equation*}
\check{\mathbf{w}}=\sum_{i=1}^{n+1} \prod_{j=1}^{n+1} x_{j}^{a_{j i}}, \tag{4}
\end{equation*}
$$

For example, the transpose of

$$
x^{n-1}+x y^{2}+z^{2} \text { is } x^{n-1} y+y^{2}+z^{2}
$$

(The latter is equivalent to $x^{2 n-2}+y^{2}+z^{2}$).

Invertible polynomials

-HMS conjecture
The group

$$
\begin{aligned}
& \Gamma_{\mathbf{w}}:=\left\{\left(t_{0}, t_{1}, \ldots, t_{n+1}\right) \in\left(\mathbb{G}_{m}\right)^{n+2} \mid\right. \\
& \left.\quad t_{1}^{a_{1,1}} \cdots t_{n+1}^{a_{1, n+1}}=\cdots=t_{1}^{a_{n+1,1}} \cdots t_{n+1}^{a_{n+1, n+1}}=t_{0} t_{1} \cdots t_{n+1}\right\}
\end{aligned}
$$

acts naturally on $\mathbb{A}^{n+2}:=\operatorname{Spec} \mathbb{C}\left[x_{0}, \ldots, x_{n+1}\right]$.
$\operatorname{mf}\left(\mathbb{A}^{n+2}, \Gamma_{\mathbf{w}}, \mathbf{w}+x_{0} \cdots x_{n+1}\right)$ denote the idempotent completion of the dg category of $\Gamma_{\mathbf{w}}$-equivariant coherent matrix factorizations of $\mathbf{w}+x_{0} \cdots x_{n+1}$ on \mathbb{A}^{n+2}

Conjecture (L.-Ueda '2019) For any invertible polynomial w, one has a quasi-equivalence

$$
\begin{equation*}
\operatorname{mf}\left(\mathbb{A}^{n+2}, \Gamma_{\mathbf{w}}, \mathbf{w}+x_{0} \cdots x_{n+1}\right) \simeq \mathcal{W}\left(\check{w}^{-1}(1)\right) . \tag{5}
\end{equation*}
$$

Matrix factorizations

-example
By a matrix factorization, we mean a pair (f, g) of matrices with entries in $\mathbb{C}\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ such that

$$
f \cdot g=\left(\mathbf{w}+x_{0} x_{1} \ldots x_{n+1}\right) / d \text { and } g \cdot f=\left(\mathbf{w}+x_{0} x_{1} \ldots x_{n+1}\right) / d
$$

The matrix factorization associated with the structure sheaf of the critical locus of $f(x, y, z, w)=x^{n+1}+y^{2}+z^{2}+x y z w$ can be computed as

$$
\begin{aligned}
& f=\left(\begin{array}{cccc}
x^{n} & -y & x y w+z & 0 \\
-y & -x & 0 & x y w+z \\
z & 0 & -x & y \\
0 & z & y & x^{n}
\end{array}\right), \\
& g=\left(\begin{array}{cccc}
x & -y & x y w+z & 0 \\
-y & -x^{n} & 0 & x y w+z \\
z & 0 & -x^{n} & y \\
0 & z & y & x
\end{array}\right) .
\end{aligned}
$$

Matrix factorizations

-HMS for simple singularity

If \mathbf{w} is a polynomial defining a Kleinian singularity or a stabilization of such a polynomial (simple singularity), then

$$
\mathbf{w}+x_{0} x_{1} \ldots x_{n} \text { and } \mathbf{w}
$$

are right-equivalent. By a theorem of Orlov, this implies

$$
\operatorname{mf}\left(\mathbb{A}^{n+2}, \Gamma_{\mathbf{w}}, \mathbf{w}+x_{0} \cdots x_{n+1}\right)=\operatorname{mf}\left(\mathbb{A}^{n+2}, \Gamma_{\mathbf{w}}, \mathbf{w}\right)
$$

Theorem. (L.-Ueda) If w is a polynomial for a simple singularity,

$$
\operatorname{mf}\left(\mathbb{A}^{n+2}, \Gamma_{\mathbf{w}}, \mathbf{w}\right)=\operatorname{Perf} \mathscr{G}_{Q}^{n}
$$

Matrix factorizations

-Hochschild Cohomology

$$
V:=\mathbb{C} x_{0} \oplus \mathbb{C} x_{1} \oplus \cdots \oplus \mathbb{C} x_{n+1}
$$

Then (by Dyckerhoff, Ballard-Favero-Katzarkov,...) we have $H^{t}\left(\operatorname{mf}\left(\mathbb{A}^{n+2}, \Gamma, \mathbf{w}\right)\right)$ is isomorphic to

$$
\left(\bigoplus_{\substack{\gamma \in \operatorname{ker} \chi, l \geq 0 \\ t-\operatorname{dim} N_{\gamma}=2 u}} H^{-2 I}\left(d w_{\gamma}\right) \otimes \chi^{\otimes(u+I)} \otimes \Lambda^{\operatorname{dim} N_{\gamma}} N_{\gamma}^{V}\right.
$$

$$
\begin{equation*}
\left.\oplus \underset{\substack{\gamma \in \operatorname{ker} \gamma, \mid \geq 0 \\ t-\operatorname{dim} N_{\gamma}=2 u+1}}{ } H^{-2 l-1}\left(d \mathbf{w}_{\gamma}\right) \otimes \chi^{\otimes(u+I+1)} \otimes \Lambda^{\operatorname{dim} N_{\gamma}} N_{\gamma}^{\vee}\right) . \tag{6}
\end{equation*}
$$

Matrix factorizations

-Hochschild Cohomology

Here $H^{i}\left(d w_{\gamma}\right)$ is the i-th cohomology of the Koszul complex
$C^{*}\left(d w_{\gamma}\right):=\left\{\cdots \rightarrow \Lambda^{2} V_{\gamma}^{\vee} \otimes \chi^{\otimes(-2)} \otimes S_{\gamma} \rightarrow V_{\gamma}^{\vee} \otimes \chi^{\vee} \otimes S_{\gamma} \rightarrow S_{\gamma}\right\}$,
where the rightmost term S_{γ} sits in cohomological degree 0 , and the differential is the contraction with

$$
d w_{\gamma} \in\left(V_{\gamma} \otimes \chi \otimes S_{\gamma}\right)^{\Gamma} .
$$

The vector space V_{γ} is the subspace of γ-invariant elements in V, S_{γ} is the symmetric algebra of $V_{\gamma}, \mathbf{w}_{\gamma}$ is the restriction of \mathbf{w} to Spec S_{γ}, and N_{γ} is the complement of V_{γ} in V so that $V \cong V_{\gamma} \oplus N_{\gamma}$ as a 「-module.

Hochschild Cohomology

-Let's do an example
Let $\mathbf{w}=x_{1}^{3}+x_{2}^{2}+x_{3}^{2} . \mathrm{Jac}_{\mathbf{w}}=\mathbb{C}\left[x_{1}\right] /\left(x_{1}^{2}\right)$.
We have $\Gamma=\left\{\left(t_{0}, t_{1}, t_{2}, t_{3}\right): t_{1}^{3}=t_{2}^{2}=t_{3}^{2}=t_{0} t_{1} t_{2} t_{3}\right\}$.
$\chi=t_{1}^{3}=t_{2}^{2}=t_{3}^{2}=t_{0} t_{1} t_{2} t_{3}$.

We compute the summands of the formula (6) for each $\gamma \in \operatorname{Ker} \chi$ and check directly that the only contributions are (for $m \in \mathbb{N}$)
$(1,1,1,1): x_{0}^{6 m}, x_{0}^{4+6 m} x_{1} \in \mathrm{HH}^{-4 m}, \mathrm{HH}^{-4 m-2}$

$$
x_{0}^{\vee} x_{0}^{6 m+1}, x_{0}^{\vee} x_{0}^{5+6 m} x_{1} \in \mathrm{HH}^{-4 m+1}, \mathrm{HH}^{-4 m-1}
$$

$(1,1,-1,-1): \quad x_{0}^{3+6 m} x_{2}^{\vee} x_{3}^{\vee}, x_{0}^{1+6 m} x_{1} x_{2}^{\vee} x_{3}^{\vee} \in \mathrm{HH}^{-4 m-2}, \mathrm{HH}^{-4 m}$,

$$
x_{0}^{\vee} x_{0}^{4+6 m} x_{2}^{\vee} x_{3}^{\vee}, x_{0}^{\vee} x_{0}^{2+6 m} x_{1} x_{2}^{\vee} x_{3}^{\vee} \in \mathrm{HH}^{-4 m-1}, \mathrm{HH}^{-4 m+1}
$$

$$
\left(e^{2 \pi i / 3}, e^{-2 \pi i / 3},-1,-1\right): \quad x_{0}^{\vee} x_{1}^{\vee} x_{2}^{\vee} x_{3}^{\vee} \in H^{2}
$$

$$
\left(e^{-2 \pi i / 3}, e^{2 \pi i / 3}-1,-1\right): \quad x_{0}^{\vee} x_{1}^{\vee} x_{2}^{\vee} x_{3}^{\vee} \in H^{2}
$$

End

