Milnor fillable contact structures are universally tight
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We show that the canonical contact structure on the link obranal complex

singularity is universally tight. As a corollary we show tbristence of closed,
oriented, atoroidal 3-manifolds with infinite fundamergedups which carry uni-
versally tight contact structures that are not deformatiohtaut (or Reebless)
foliations. This answers two questions of Etnyre12][

1 Introduction

Let (X,Xx) be a normal complex surface singularity. Fix a local embeddin@Xok)

in (CN,0). Then a small spher&"N-1 c CN centered at the origin interseck
transversely, and the complex hyperplane distribufign on M = XN N1 induced
by the complex structure oX is called thecanonicalcontact structure. For sufficiently
small radiusg, the contact manifold is independent ©fand the embedding, up to
isomorphism. The 3-manifol¥ is called the link of the singularity, andM, &can) is
called thecontact boundaryf (X, x).

A contact manifold(Y,§) is said to beMilnor fillable if it is isomorphic to the contact
boundary(M, &can) of some isolated complex surface singulari¥, x). In addition,
we say that a closed and oriented 3-manifglés Milnor fillable if it carries a contact
structure so that(Y,&) is Milnor fillable. It is known that a closed and oriented 3-
manifold is Milnor fillable if and only if it can be obtained by plumbing according to a
weighted graph with negative definite intersection matrix (28] fnd [L8]). Moreover
any 3-manifold has at most one Milnor fillable contact structure uigdmorphism
(cf. [5]). Note that Milnor fillable contact structures are Stein fillable (sg dnd
hence tight 10]. Here we prove that every Milnor fillable contact structure is in fact
universally tight, i.e., the pullback to the universal cover is tight. We would tike
point out that universal tightness of a contact structure is not impliedchpptner type

of fillability.
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In[12], Etnyre settled a question of Eliashberg and Thurstdhly proving that every
contact structure on a closed oriented 3-manifold is obtained by a defomudti
foliation and raised two other related questions:

(Question 4 in12)) Is every universally tight contact structure on a clogchanifold
with infinite fundamental group the deformation of a Reebless foliation?

(Question 5 in12)) Is every universally tight contact structure on an atoroidal closed
3-manifold with infinite fundamental group the deformation of a taut foliation?

In this note we answer both questions negatively as a consequenceréiouresult,
although one does not necessarily need our main result to find cowsngoies. As

a matter of fact, one can drive the same consequence by the existersmail) (
Seifert fibered_-spaces carrying transverse contact structures which are knoven to b
universally tight (see Remafk4).

The assumption on the fundamental group is necessary since every folgtia
closed 3-manifold with finite fundamental group has a Reeb component ¢aoe fis
not taut) by a theorem of Novikov. Moreover Ghiggiai] gave examples of toroidal
3-manifolds which carry universally tight contact structures that areveakly fillable
(and therefore can not be perturbations of taut foliations14y) [

We contrast our result with the result of Honda, Kazez and Mat[21], where they
show that for a sutured manifold with annular sutures, the existence ohae(sally)
tight contact structure is equivalent to the existence of a taut foliation.

We assume that all the 3-manifolds are compact and oriented, all the cetrtazt
tures are co-oriented and positive and all the surface singularities @dageis and
normal.

2 Milnor fillable implies universally tight

A graph manifolds a 3-manifoldM(I") obtained by plumbing circle bundles according
to a connected weighted plumbing graph More precisely, letAq,...,A; denote
vertices of a connected graph Each vertex is decorated with a p&i, ) of integral
weights, whergy; > 0. Here thath vertex represents an oriented circle bundle of Euler
numbere over a closed Riemann surface of gemus ThenM(T') is the 3-manifold
obtained by plumbing these circle bundles according ta'his means that if there is



an edge connecting two verticeslin then one glues the circle bundles corresponding
to these vertices as follows. First one removes a neighborhood of a filndeon
each circle bundle which is given by the preimage of a disk on the basee$hking
boundary torus on each circle bundle can be identified Gtk S' using the natural
trivialization of the circle fibration over the disk that is removed. Now onegthese
bundles together using the diffeomorphism that exchanges the two cictdedan the
boundary tori.

A horizontal open book inM(T") is an open book whose binding consists of some
fibers in the circle bundles and whose (open) pages are transverseftbets. We
also require that the orientation induced on the binding by the pages canuitiehe
orientation of the fibers induced by the fibration.

In this paper, we will consider horizontal open books on graph manitmdsng from
isolated normal complex singularities. Given an analytic funcfioigX,x) — (C,0)
vanishing atx, with an isolated singularity at, the open book decompositiaB; of
the boundary of (X, x) with bindingL = M nf ~1(0) and projectiont= % M\ L—
St c C is called theMilnor open bookinduced byf .

Theorem 2.1 A Milnor fillable contact structure is universally tight.

Proof Given a Milnor fillable contact 3-manifoldY,&). By definition (Y,§) is
isomorphic to the link M, &can) of some surface singularity. Hence it suffices to show
that (M, &can) is universally tight. It is known tha! is an irreducible graph manifold
M(T") wherel is a negative definite plumbing gra®i7]. Moreover, such a manifold is
characterized by the property that there exists a unique minimdl gpbssibly empty)
consisting of pairwise disjoirihcompressibleéori in M such that each component of
M — 7 is an orientable Seifert fibered manifold with an orientable b2gg [n terms

of the plumbing descriptior?” is a subset of the tori that are used to glue the circle
bundles in the definition oM(I"). The setZ is minimal if in plumbing of two circle
bundles the homotopy class of circle fiber in one boundary torus is ndifiddrwith

the homotopy class of the fiber in the other boundary torus.

Recall that an arbitrary Milnor open boo®3B on M has the following essential
featuresp]: Itis compatible with the canonical contact structgeg,, horizontal when
restricted to each Seifert fibered pieceNh— 7 which means that the Seifert fibres
intersect the pages of the open book transversely, and the binding opémebook
consists of some number (which we can take to be non-zero) of regules fib the
Seifert fibration in each Seifert fibred piece.
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In the rest of the proof, we will construct a universally tight contaaicttire& on M
which is compatible with the Milnor open boaR3. This implies that the canonical
contact structuréan, is isotopic tog (since they are both compatible withB) and
thus we conclude thd&,, on the singularity linkM is universally tight.

Let V; denote a Seifert fibered 3-manifold with boundary, which is a comporfent o
M —N(7), whereN(7) denotes a regular neighborhood @f. Consider the 3-
manifold v/ obtained by removing a regular neighborhood of the bindin@®ffrom

Vi. Note thatV/ is also a Seifert fibered manifold since the binding consists of regular
fibers of the Seifert fibration ol;. Then the restriction of a page @iB to V/ is a
connected horizontal surface (see the proof of Propositiérird5]) which we denote

by . It follows that V/ is a surface bundle oves' whose fibers are precisely the
restriction of the pages adB to V/, sinceX does not separaté’. Note thatX; is a
branched cover of the base of the Seifert fibration/prand the monodrom of this
surface bundle is a periodic self-diffeomorphismgf of some ordemn; (cf. Section

1.2 in [19)).

Now we construct, as in Section 2 id4], a contact structuré; on V{ which is
“compatible” with the surface fibratioN/ — S'. Here compatibility means that the
Reeb vector field of the contact form is transverse to the fibers, keapmind that
a fiber of this fibration is cut out from a page of the open boR. Let 3; denote a
1-form on X such thatdf; is a volume form onx{ and Bi|az; is a volume form on
0%i. Thenthe 1-form

1 ni—1

Bi = o (@)"Bi,

I k=0
which also satisfies the above conditions, ig &nvariant 1-form on¥. Lett denote
the coordinate orSt. It follows that for every real numbeg > 0, the kernel of the
1-form dt+ €[] is a contact structure odf which is compatible with the fibers. Note
that the characteristic foliation on every torusavt/ is linear with a slope arbitrarily
close to the slope of the foliation induced by the pages when0. Here we point out
that, for fixede > 0, different choices of; give isotopic contact structures by Gray’s
theorem, while the choice afwill not play any role in our construction as long as it is
sufficiently small. Therefore, we will fix a sufficiently smalland denote the isotopy
type of this contact structure b§f. Moreover the Reeb vector fielg is tangent to
the circle fibers in the Seifert fibration and hence transverse to the fibérs surface
bundleV! — St.

Furthermore, we observe th§tis transverse to the Seifert fibration & and can be
extended over t&/; along the neighborhood of the binding so that it remains transverse



to the Seifert fibration. Now we claim that the resulting contact structuren V;

is universally tight. This essentially follows from an argument in Propositignid

[24] where the universal tightness of transverse contact structurefosedcSeifert
fibered 3-manifolds is proven (see also Corollary 2.228). The difference in our
case is thav; may have toroidal boundary. Nevertheless, the argumerg4nstill
applies. Namely, any contact structure which is transverse to the fiberSeffert
manifold (possibly with boundary or non-compact) is universally tight. Canrdidst

the universal cover of the base of the Seifert fibration. This can beregthor R2.

If it is S, then theV; cannot have any boundary, as we arranged that if there is a
boundary toV;, it should be incompressible. Therefore, in that cdse- 0 and M

is closed Seifert fibred space with baSewith a contact structure transverse to the
fibres of the Seifert fibration. The universal coveifs now obtained by unwrapping
the fibre direction. Hence it is eith&® or & x R depending on whethem (M) is
finite or infinite. However, it cannot b& x R as M is irreducible. In particular,
when = 0, it follows thatM is either a small Seifert fibered or a lens space and its
universal cover iS’. The contact structure and the Seifert fibration lifts to a transverse
contact structure o%°. It follows that this is the standard tight contact structure on
S® (for example, see2d]). Next, suppose that the base of the Seifert fibratiorvpn
has universal cover homeomorphiclks. We then lift the Seifert fibration and the
contact structure to get a contact structuré®dn« S', such that the contact structure is
transverse to th&' factor. Next, we unwrap th&' direction to get a contact structure
on R? x R such that the contact structure is transverse toRHactor and invariant
under integral translations in this direction. It follows that this latter contagttire

is the standard tight contact structuredf (see [L6] Section 2.B.c).

Let Vy,...,V, denote the Seifert fibered manifolds in the decompositidvd efN (7).
Ourgoalisto glue togethéf’s onV;’s to get a universally tight contact structiyen M
which iscompatiblenith OB. We should point out that if one ignores the compatibility
with OB, theng;’s can be glued along the incompressible pre-Lagrangian taivps

to yield a universally tight contact structure &h, by Colin’s gluing theoremd]. This
was already described in Theorer 1n [7], although the contact structures on Seifert
fibered pieces were obtained by perturbing Gabai’s taut foliatibg|s [

By construction, the contact structugeon V; is compatible with the restriction adB
to Vi. We first modify §; near each component @, to put it in a certain standard
form. To this end, letN(T;;) denote the normal neighborhood of a tofiyss 7 along
which plumbing is performed betweaf andV;.

Recall that the plumbing was perfomed by trivializing the boundary of theediindles
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hence identifying them witi2 = S' x S' and then exchanging the two circle factors.
We can extend these trivialization in a neighborhoodipfby picking sections; near

T which extends the section used for the plumbing. fi.etenote the fibre direction
of the Seifert fibration orV;. Then, we can identify the boundary N{Tj;) in V; with

T2 so that the basiéri,s) is sent to the standard bagigy,dy} of T2. Hence, we can
identify N(Tjj) = T2 x [, bi] Up, —T2 x [ay, bj] wherep;; : T2 x {bi} — —T?x {bj} is
the gluing map used in plumbing sendifg,s) — (s, rj).

Let % denote the foliation by circles with a certain rational slopg¢my on T2 x {a}
induced by the pages @3. This means that the page intersettsx {a;} at a linear
curve tangenttonr; +ms , we also scaley, andmy so thatwe hav@(mri+ms) =1
(The latter can be arranged as by construcfiorestricts to a volume form on the
boundary of the pages of the open book when restricta)toThe pages extend into
T2 x [a,bi] linearly, as they intersect ead? x {c} transversely with slopen/m,
thus we obtain the foliatiors; x [a;,b]. Similarly, % denote the foliation by circles
given by the intersection of the pages @8 with T2 x {&} which necessarily has
rational slopemy/m; so that the gluing mapj; glues the pages in each piece together
to form OB.

For later convenience, in our identification(T;j) = T2 x [a;, bj] Up, — T2 x [a,by],
we will choose—g <g <b< g so that —cota; = m;/(my — ¢€) is the slope of
the characteristic foliation of the contact structfeon T? x {a} and b; so that
— cotbj = m; /my is the slope of the pages 6fB. By our construction, the characteristic
foliation is the integral of the vector fielder; + (mri +ms) and we can chooseas
small as we need, so that the slope of the characteristic foliation is arbitrimsiy ©
the slope of the pages. In particular, we can arrangehat(a;, a; + 7).

We now need to glue together the contact forms that we constructédmnextending
them toN(T;;). For our purposes, we need to pay special attention to compatibility
with OB on N(Tj).

Consider the contact forra; = costdx+- sintdy on T? x [a;,b;]. By [8] Lemma 91

we can isotopé&; on V; near the boundary so that it is defined by a contact form that
glue toa; (note that the slopes of the characteristic foliationdérx {a;} induced by

& anda; agree). Moreover, after this isotopy the Reeb vector fielg aftill remains
transverse to the pages ofB on V;. Furthermore, the Reeb vector field of, has
slope tama hence it is perpendicular to the slopecota; at T2 x {a} which we know

to be arbitrarily close the slope of the foliatigh x {a} induced by the page ad3.
Since the slope of the Reeb vector field changes by strictly lesstfaas we go from

a to by, the Reeb vector field still remains transversefio< [a;,bi]. Therefore, the



form a; is compatible withOB in T2 x [a,bi]. Finally, to finish the construction of
the contact structur& on M, we observe that the gluing map sendso; to aj, since
we arranged that the slope af and the slope of the characteristic foliation induced
by the page are the sameT&tx {b;}.

We constructed a contact structuigewhich is compatible with a Milnor open book
(hence is isomorphic t@can) such thatg is isotopic to&; on V;, a universally tight
contact structure, furthermore for each incompressible tdras7 , the characteristic
foliation of € is a linear foliation (with slopen /my). Therefore, we are in a position to
apply the gluing result of Colirg] which states that universally tight contact structures
can be glued along pre-Lagrangian tori to a universally tight contaettstre. This
shows tha€an, is a universally tight contact structure. O

Remark 2.2 The above construction shows that when the fibres of each Seifegdibe
piece is not contractible, thefyan is hypertight that is, it can be defined by a contact
form whose associated Reeb vector field has no contractible orbits, fBhesample
when T # 0, &can is hypertight. Note that hypertight contact structures are tigojt [
and any finite cover of a hypertight contact manifold is hypertigH}.[ These results
together with the fact that graph manifolds have residually finite fundameraaps
give another proof of universally tightness (avoiding Colin’s gluingus SinceM

is irreducible, its universal cover is diffeomorphic to eitl#r or R® depending on
whetherty (M) is finite or infinite. The universal cover iS* if and only if M is
atoroidal, therM is either a small Seifert fibered space or a lens space and these have
no hypertight contact structures. Therefoké,is hypertight if and only ifry (M) is
infinite (or equivalently its universal cover &®).

Remark 2.3 Itis known that any finite cover of a singularity link is a singularity link.
Therefore, another approach to prove Theoethwould be to show that a finite cover
of a Milnor fillable contact structure is Milnor fillable. It is not clear to the authof
this paper whether this is indeed true. Note that there exist finite covetsioffiiable
contact structures which are not tight (in particular, not Stein filladl&)) [

Remark 2.4 Since any Milnor fillable contact 3-manifoldY,&) is Stein fillable
(see f#]) , it follows from Theorem 1.5 in 28] that the contact invariant(§) €
I—/|I\:(—Y)/(i1) is non-trivial. Therefore, by1[5], the Giroux torsion ofY is zero. In
particular, the incompressible tori i have zero torsion. This was predicted 6]
and was raised as a question there.
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3 Universally tight but no taut

A rational homology sphere is called anspace if rkHF(Y) = |H1(Y;Z)|. Lens
spaces are basic exampled.egpaces which explains the name. A characterization of
L-spaces among Seifert fibered 3-manifolds is given by

Theorem 3.1 [23] A rational homology sphere which is Seifert fibered o®&ris an
L-space if and only if it does not carry a taut foliation.

A huge class of examples bfspaces come from complex surface singularities. Recall
that an isolated normal surface singulariy, x) is rational (cf. [L]) if the geometric
genuspg = dimCHl(f(, Ox) is equal to zero, wher& — X is a resolution of the
singular pointx € X. This definition does not depend on the resolution.

Theorem 3.2 [26] The link of a rational surface singularity is arspace.

Corollary 3.3 If Y is the link of a rational surface singularity which is Seifert fibered
overS?, thenY carries a universally tight contact structure that can not be obtained by
a deformation of a taut foliation.

Proof The link of a rational surface singularity is dnspace by Theorer8.2 and
hence it does not carry any taut foliations by Theoi@th Moreover, Theoren2.1
implies that the canonical contact structure on this link is universally tight. O

Remark 3.4 Note that Seifert fibered 3-manifolds as above carry transverseotonta
structures (by Theorem.3 in [22]) and such contact structures are known to be
universally tight (cf. Corollary 2 in [22] and also Proposition.4 in [24]).

Corollary 3.5 There exist infinitely many atoroid&-manifolds with infinite funda-
mental groups which carry universally tight contact structures thahatreleforma-
tions of taut (or Reebless) foliations.

Proof It is known (cf. [9]) that the link of a complex surface singularity has finite
fundamental group if and only if it is a quotient singularity. Thus the link aitional

but not quotient surface singularity has an infinite fundamental grougie that the
links of a quotient surface singularities (all small Seifert fibered 3-méisjoare
explicitly listed in [2] via their dual resolution graphs. It is easy to see that there are
many infinite families of small Seifert fibered 3-manifolds which are links of retio



but not quotient surface singularities. This finishes the proof usingl2oy 3.3
since all small Seifert fibered 3-manifolds are known to be atoroidal. Nateothan
atoroidal 3-manifold, a Reebless foliation is taut. O

Consequently, Corollarg.5answers Questions 4 and 5 of Etnyt@][negatively. For
the sake of completeness we give an infinite family of counterexamples. mak s
Seifert fibered 3-manifold

12 p
23341
can be described by the surgery diagram depicted in Fitjuneherep is a positive
integer. Note tha,, is the link of a complex surface singularity whose dual resolution
graph is given in Figure.

Yo =Y(

-2 =2 -2 -2 =2 -2
O—0 °°° & I @ 9
p vertices
-3

Figure 2: Dual resolution graph

Let (X,x) be a germ of a complex surface singularity. Fix a resolutiork — X and
denote the irreducible components of the exceptional divisserr1(x) by UL, E;.
The fundamental cyclef E is by definition the componentwise smallest nonzero
effective divisorZ = 5 zE; satisfyingZ-E <0 for all 1 <i <n. It turns out that
the singularity(X,x) is rational if each irreducible componeRt of the exceptional
divisor E is isomorphic toCP* and

n
Z-2+5 z(-E?—-2)= -2,
2,%E
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whereZ = 3 zE; is the fundamental cycle d&.

Enumerate the vertices in the dual resolution graphvfofrom left to right along the
top row with the bottom vertex coming last (see Fig@je It is then easy to check
(cf. [3]) that the coefficient$zs,2,, .. .,2,) of the corresponding fundamental cycle is
given by (1,2,3,3,...,3,3,2,1,1). It follows that Y, is the link of a rational surface
singularity and hence itis an L-space. We conclude that the canonidalatstructure
&can ON Yy is universally tight but it can not be obtained by perturbing a taut foliation.
Moreover, ifp > 2, thenY, is not a quotient singularity?] and thus its fundamental
group is infinite.
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