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We study the symplectic topology of some finite algebraic quotients of the An

Milnor fibre which are diffeomorphic to the rational homology balls that appear
in Fintushel and Stern’s rational blowdown construction. We prove that these
affine surfaces have no closed exact Lagrangian submanifolds by using the already
available and deep understanding of the Fukaya category of the An Milnor fibre
coming from homological mirror symmetry. On the other hand, we find Floer
theoretically essential monotone Lagrangian tori, finitely covered by the monotone
tori which we study in the An Milnor fibre. We conclude that these affine surfaces
have non-vanishing symplectic cohomology.

1 Introduction

Let p > q > 0 be relatively prime integers. In [11], Casson and Harer introduced
rational homology balls Bp,q which are bounded by the lens space L(p2, pq − 1).
These homology balls were subsequently used in Fintushel-Stern’s rational blow-down
construction [15] (see also, [32]). In fact, Bp,q are naturally equipped with Stein
structures since they are affine varieties (cf. [23]) and here we are concerned with the
symplectic topology of these Stein surfaces.

The key topological fact is that Bp,q are p-fold covered (without ramification) by the
Milnor fibre of the Ap−1 singularity. The latter has a unique Stein structure and its
symplectic topology is well-studied (see [24], [28], [41], [36]).

Following Seidel [35], we make the following definition:

Definition 1.1 A Stein manifold X is said to be empty if its symplectic cohomology
vanishes. It is non-empty otherwise.

We recommend [38] for an excellent survey of symplectic cohomology. Non-empty
Stein manifolds are often detected by the following important theorem of Viterbo (here
stated in a weak form):

http://www.ams.org/mathscinet/search/mscdoc.html?code=\@secclass 
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Theorem 1.2 (Viterbo, [44]) Let X be a Stein manifold. If there exists a closed exact
Lagrangian submanifold of X then X is non-empty.

The question of existence of closed exact Lagrangian submanifolds goes back to Gromov,
who proved that no such submanifold exists in Cn (see [19, Corollary 2.3.B2 ]). Of
course Cn also has vanishing symplectic cohomology (as explained, for example, in [38,
Section 3f]), which together with the above theorem reproves Gromov’s result.

We will exploit the relation of Bp,q with the Milnor fibre of Ap−1 singularity to prove
the following theorem:

Theorem 1.3 For p 6= 2, the affine surface Bp,q has no closed exact Lagrangian
submanifolds. On the other hand, Bp,q contains a Floer theoretically essential Lagrangian
torus, therefore Bp,q is non-empty.

Although one expects to find many non-empty Stein surfaces with no closed exact
Lagrangian submanifolds, to our knowledge, the above examples represent the first
explicit construction of non-empty Stein surfaces with no closed exact Lagrangian
submanifolds. In higher dimensions (dimR ≥ 12), Abouzaid and Seidel exhibited
infinitely many examples in [1] where symplectic cohomology is non-zero with
coefficients in Z but vanishes with coefficients in Z2 . Such examples obviously cannot
contain closed exact Lagrangian submanifolds by Viterbo’s theorem applied over Z2 .
Our examples are not only of lower dimension but also have non-vanishing symplectic
cohomology with arbitrary coefficients. Therefore, there is no direct way of appealing to
Viterbo’s theorem in order to exclude existence of closed exact Lagrangian submanifolds.
Their non-emptiness is detected by the existence of Floer theoretically essential tori
([38] Proposition 5.2). On the other hand, the non-existence of closed exact Lagrangians
is proved using a detailed understanding of closed exact Lagrangians in the An Milnor
fibres based on twisted symplectic cohomology applied by Ritter in [34] which suffices
for p odd. For p even, we utilize a deeper understanding coming from homological
mirror symmetry and calculations on the B-model provided by Ishii, Ueda, Uehara
[21], [22]. It is remarkable that algebro-geometric calculations on the mirror side can
be utilized profitably towards an application to symplectic topology.

En route, we study a class of tori in An Milnor fibres, which we call matching tori (cf.
matching spheres [5] ). We will classify them up to Hamiltonian isotopy and show that
the Floer cohomology of these tori is non-zero. This fact is probably known to experts
in the field; however as we did not find a written account of this result for n ≥ 2, we
take this opportunity to provide a proof as this fact will be used in proving our main
result above.
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2 Lagrangian tori in An Milnor fibres and their Floer coho-
mology

2.1 An Milnor fibre

The four-dimensional An Milnor fibre is given by the affine hypersurface1 :

Sn = {(x, y, z) ∈ C3 : zn+1 + 2xy = 1}.
Sn has the induced complex structure as a subvariety of C3 , which makes it into a
Stein manifold, and can be equipped with the exact symplectic form inherited from the
standard form on C3 given by:

ω = dθ =
i
2

(dx ∧ dx̄ + dy ∧ dȳ + dz ∧ dz̄)

where θ = i
4 (xdx̄− x̄dx + ydȳ− ȳdy + zdz̄− z̄dz) .

Due to the existence of many exact Lagrangian spheres in Sn , this hypersurface has
been instrumental in constructing many interesting examples in symplectic geometry
(see [24], [28], [41], [36]). We will recall some generalities about Sn , and we refer the
reader to loc. cit. for more.

The projection Πn : Sn → C to the z-coordinate yields an exact Lefschetz fibration with
n + 1 critical points at the roots of unity, which is adapted to the Stein structure. The
fibre of this Lefschetz fibration is a one-sheeted hyperboloid. The vanishing cycle of
any critical point and any vanishing path in the regular fibre is always the core of the
hyperboloid, given by

Vx = Π−1(z) ∩ {(x, y, z) ∈ C3 : |x| = |y|}.

Let Dr be the disk of radius r centered at the origin in the base, and Cr = ∂Dr . For
r > 1, the three-manifolds Yr = ∂(Π−1(Dr)) are all diffeomorphic to the lens space
L(n + 1, n) and are equipped with the unique tight contact structure on L(n + 1, n)
induced by the filling provided by Π−1(Dr). (The fact that there is a unique tight

1The factor 2 is for compatibility with the conventional description of An Milnor fibre given
by {(x, y, z) ∈ C3 : zn+1 + x2 + y2 = 1}
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contact structure on L(n + 1, n) is used below and follows from the classification of
tight contact structures on lens spaces, see [17], [20]). The restriction Π|Yr provides an
open book supporting this contact structure and its monodromy is given by (n + 1)th

power of the right-handed Dehn twist along the core of the fibre. Note that the fibre has
genus zero and clearly there is a unique factorization of this monodoromy into a product
of right-handed Dehn twists, therefore Wendl’s theorem ([46]) implies that there is
a unique Stein structure on Sn up to deformation, namely the one coming from the
restriction of the standard structure on C3 . In this way, we obtain an exact symplectic
manifold (Sn, dθ) with c1(Sn) = 0. Topologically, Sn is a linear plumbing of n disk
bundles over S2 with Euler number −2.

Next, we consider a family of Lagrangian tori in An Milnor fibre. We call the tori in
this family matching tori, as they are obtained as unions of vanishing cycles.

2.2 Matching tori

Given a Lefschetz fibration Π : E 7→ D2 , a closed embedded circle γ : [0, 1] 7→ D2

with γ(0) = γ(1) = p and a Lagrangian V in the fibre Fp = Π−1(p), such that the
symplectic monodromy φ along γ takes V to itself, we define a matching Lagrangian
L to be the union of all parallel translates of V over γ . Explicitly L =

⋃
x∈γ Vx where

Vx is the parallel transport of V over γ to Π−1(x).

Note that L is diffeomorphic to the mapping torus of φ|V and is in fact a Lagrangian
submanifold of E by Lemma 16.3 in [36]. In the case when dimension of E is 4, and V
is a circle, we call L the matching torus of V along γ .

In the case of the Milnor fibre Sn , we take the closed path γ oriented in such a way that
the enclosed area is positive. We call the resulting Lagrangian torus Tn;γ or Tn if the
particular choice of γ is not important.

We will see below that the tori Tn bound holomorphic disks, in particular they cannot
be exact Lagrangian submanifolds of Sn . In contrast, there is an abundance of exact
Lagrangian spheres obtained by matching sphere construction, which we recall now.
Take an embedded path c : [0, 1] 7→ D2 such that c−1(Critv(Π)) = {0, 1}. To such a
path c one can associate an exact Lagrangian sphere Vc defined explicitly as the union of
vanishing cycles over c: Vc =

⋃
x∈c Vx where Vx = Π−1(z)∩{(x, y, z) ∈ C3 : |x| = |y|}.

The fact that Vc is an exact Lagrangian can be seen by observing that it can be split up
as a union of Lefschetz thimbles for the Lefschetz fibration Πn (see [36] 16g). We note
that the core spheres in the plumbing picture of Sn can be taken to be matching spheres
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of linear paths connecting the critical values.

As Sn is simply connected and π2(Tn) = 0, from the homotopy exact sequence we
have:

0→ π2(Sn)→ π2(Sn,Tn)→ π1(Tn)→ 0

which splits as π1(Tn) = Z2 is free. π2(Sn) is generated by the cores of the disk bundles
in the plumbing description of Sn and are represented by Lagrangian matching spheres,
hence they have zero Maslov index and symplectic area. Furthermore, one of the Z
factors in π1(Tn) is generated by the vanishing cycle V , which is the boundary of a
Lefschetz thimble. Since the thimble is a Lagrangian D2 , again its Maslov index and
the symplectic area vanishes. It remains to determine the index and the area on a class
β ∈ π2(Sn,Tn) such that Π restricted to ∂β is a degree 1 map onto γ . For this purpose,
we will need a more explicit computation.

Let us consider the parametrized curve c(t) = (n(t)e2πi(α(t)+β(t)), n(t)e2πi(α(t)−β(t)), γ(t))
for t ∈ [0, 1], n(t) > 0, α(t), β(t) real valued functions and γ(t) is a degree 1
parametrization of γ such that 2n(t)2e4πiα(t) = 1− γ(t)n+1 . Then c(t) is a curve on Tn

mapping onto γ with a degree 1 map. The area of any disk with boundary on such a
curve is a sum of the areas of its three coordinate projections. This area is given by the
integral of θ over the curve by Stokes’ theorem. We compute:∫

c
θ =

∫
γ

i
4

(zdz̄− z̄dz) + 2π
∫ 1

0
α′(t)n(t)2dt.

Here the first term is the area enclosed by the projection of c(t) on the z coordinate
plane, and the second term is the sum of the two other area contributions. Note that the
integral is independent of β(t). This is a reflection of the fact the integral of θ over V
is zero, hence we could have taken a curve c(t) with β(t) = 0.

Lemma 2.1 I = 2π
∫ 1

0 α
′(t)n(t)2dt > 0.

Proof Consider the map f : C \ Critv(Πn) 7→ C \ {0}, f (z) = 1−zn+1√
2|1−zn+1|

. This is

a composition of the holomorphic map p(z) = 1 − zn+1 and a smooth orientation
preserving map s(reiθ) =

√ r
2 eiθ and has a continuous extension to F : C 7→ C. The

map f sends γ(t) to n(t)e4πiα(t) , so the integral we are interested in is I =
∫

f (γ)
1
2 r2dθ .

If we denote the interior of γ (in C) by G, then F(G) has boundary f (γ) and by Stokes
theorem, I =

∫
F(G) rdr ∧ dθ =

∫
f (G\Critv(Πn)) rdr ∧ dθ , which is positive since f is

orientation preserving.
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We note in addition, that I =
∫

f (G\Critv(Πn)) rdr ∧ dθ =
∫

(G\Critv(Πn)) f ∗(rdr ∧ dθ). We
put

σ = σ0 + f ∗(rdr ∧ dθ)

where σ0 = i
2 dz ∧ dz̄ is the standard area form on C \ Critv(Πn) induced from C, and

note that since f is orientation preserving, σ is an area form on C \Critv(Πn). Observe
that σ blows up near Critv(Πn) but is integrable across them, so for a region G in C
one always has a finite integral

∫
G σ =

∫
G\Critv(Πn) σ .

We summarize this discussion in the following lemma:

Lemma 2.2 Let β ∈ π2(Sn,Tn), ω and σ are symplectic forms on Sn and C\Critv(Π)
as above. Then we have: ∫

β
ω =

∫
Π(β)

σ

Proof Note that for the classes in π2(Sn,Tn) that are represented by matching spheres
or a Lagrangian thimble both integrals vanish. The equality for any other class follows
from the computations above.

Note that varying the path γ outside of the critical value set of Π leads to a Lagrangian
isotopy of Tn . We remark that this isotopy is Hamiltonian if and only if it is exact (see
[33, Section 6.1]), which in the situation at hand is equivalent to the symplectic area of
the disk discussed above staying constant during the isotopy (as the other generator still
bounds the thimble during such an isotopy). Therefore, we define

τγ :=
∫
γ

i
4

(zdz̄− z̄dz) + 2π
∫ 1

0
α′(t)n(t)2dt

which will be called the monotonicity constant. Note that τγ is the area of region
enclosed by γ with respect to σ .

Lemma 2.3 Let (Σ, σ = dλ) be an exact symplectic 2-manifold. Then any two
isotopic closed curves γ0, γ1 with

∫
γ0
λ =

∫
γ1
λ are Hamiltonian isotopic via a

compactly supported Hamiltonian isotopy.

Proof This is an adaptation of Proposition A.1 in [2] and follows a similar route - we
first extend the isotopy connecting γ0 to γ1 to a global smooth isotopy such that it
ends at a symplectomorphism, then use parametrised Moser’s trick to get a symplectic
isotopy connecting γ0 to γ1 (this works only in dimension 2) . Finally, this gives an
exact Lagrangian, and hence Hamiltonian, isotopy between γ0 and γ1 . The proof below
follows this outline.
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Let ft be an isotopy connecting γ0 to γ1 , that is a map f : S1 × [0, 1]→ Σ such that
ft = fS1×{t} is an embedding. Without loss of generality, it suffices to restrict to a
compact submanifold of Σ which contains the image of f and in which γ0 (and hence
γ1 ) is separating (in fact, ft can be taken to be supported near embedded annuli with
core γ0 and bigons between γ0 and γ1 ; it is easy to see that support of such an isotopy
is contained in a sub-annulus of Σ with core γ0 ).

We first prove that ft extends to symplectic isotopy Ft of a neighbourhood of γ0 (cf.
Ex. 3.40 in [29]). Write γt = ft(γ0) and choose an increasing sequence tk ∈ [0, 1]
starting with t0 = 0 and ending with tN = 1, such that γtk+1 is in a Weinstein tubular
neighbourhood of γtk and for t ∈ [tk, tk+1], γt are graphs of closed 1-forms µt on γtk .
Then (q, p) 7→ (q, p + µt(q)) is a symplectic isotopy extending ft on a neighbourhood
of γtk . Taking the neighbourhood of γ0 small enough that it lands in the domain of
definition of these extensions for all times t ∈ [0, 1] gives the desired extension Ft .

The isotopy Ft constructed above extends to a smooth compactly supported isotopy
of Σ which coincides with Ft on a smaller neighbourhood of ν(γ0) of γ0 . We denote
this isotopy of Σ by Gt . We next show that by a further compactly supported smooth
isotopy we can replace Gt with an isotopy Ht such that Gt and Ht agree near γ0 and
H1 is a symplectomorphism.

Consider the compactly supported closed 2-form G∗1σ − σ . Since G1 is a symplecto-
morphism near γ0 , G∗1σ − σ vanishes identically near γ0 . Hence, it represents a class
in H2

c (Σ, ν(γ0)). In addition, as γ0 is separating, this last group is rank 2 corresponding
to two connected pieces of Σ\ν(γ0) , say Σ1 and Σ2 .

Now, by Stokes’ theorem and since Gt is compactly supported, we get
∫

Σ1
(G∗1(σ)−σ) =∫

γ0
(G∗1(λ)− λ) =

∫
γ1
λ−

∫
γ0
λ = 0, and similarly the integral of G∗1σ − σ vanishes

over Σ2 . Therefore, we have G∗1σ − σ = dα for some compactly supported 1-form α

which vanishes near γ0 .

Hence we have a family of symplectic forms σs = (1− s)σ + sG∗1(σ) = σ + sdα and
Moser’s trick yields the desired isotopy. In summary, we have produces a compactly
supported isotopy Ht such that H1 sends γ0 to γ1 and is a symplectomorphism on Σ.

We have the following lemma:

Lemma 2.4 A compactly supported symplectomorphism H1 smoothly isotopic to
identity via a compactly supported isotopy is isotopic to identity via a compactly
supported family of symplectomorphisms.
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Proof This is a compactly supported version of Lemma A2 in [2], and is an application
of a parametrised Moser’s trick.

Completion of the proof of Lemma 2.3: The Lemma 2.4 applied to Ht yields a symplectic
isotopy Kt connecting γ0 to γ1 . Finally, as the embedded surfaces bounded by γt

(namely Kt(Σ1)) all have the same area, Kt(γ0) is an exact Lagrangian isotopy, and so
γ0 and γ1 are Hamiltonian isotopic.

Applying Lemma 2.3 to (Σ = C \ Critv(Πn), σ) where σ is as in Lemma 2.2, we get
the following:

Corollary 2.5 Suppose embedded circles γ0 and γ1 are isotopic in C \Critv(Πn) and
τγ0 = τγ1 . Then Tn,γ0 and Tn,γ1 are Hamiltonian isotopic in Sn .

Proof By Lemma 2.3, γ0 and γ1 are Hamiltonian isotopic, let γt be the image of γ0

in such an isotopy then by Lemma 2.2 the Lagrangian isotopy of the corresponding
matching tori Tn,γt is exact.

We also have the following obvious observation.

Corollary 2.6 Suppose an embedded circle α is entirely contained inside an embedded
circle β . Then τα < τβ .

Remark 2.7 A direct computation shows that if we take γr to be a circle of radius
r > 1 centred at the origin, τγr approaches m = π + n + 1 as r approaches 1. As τr

grows to infinity when r grows, any τ above m can be obtained by taking a circle of
some unique radius.

We next complete the computation of Maslov index on π2(Sn,Tn).

Lemma 2.8 For β ∈ π2(Sn,Tn), the Maslov index µ(β) = 2(β ·Π−1
n (0)).

Proof Since Maslov index is invariant under Lagrangian isotopy, it suffices to prove
this formula for the matching tori above round circles γr (of any radius bigger than 1).
To this end, we construct a complex meromorphic volume form Ω which is nowhere
vanishing and has a pole of order 1 along the divisor D = Π−1

n (0) in Sn , and with
respect to which Tn is a special Lagrangian submanifold, i.e. Im(Ω)|Tn = 0. Then
[4, Lemma 3.1] states that the Maslov index µ(β) is twice the algebraic intersection
number of β with the divisor of Ω−1 , that is with Π−1

n (0).
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Such an Ω can be obtained by the restriction to Sn of Ω̂ = dx∧dy
2xy−1 on C3 . Note that Sn is

cut out by the equation 2xy−1 = zn+1 , hence on Sn we have 2xdy+2ydx = (n+1)zndz,
so that dx∧dy

2xy−1 = (n+1)
2yz dz ∧ dy = − (n+1)

2xz dz ∧ dx. We see that on Sn \ D the form Ω is
non-vanishing, and since D is given by z = 0 (and hence both x and y are non-zero on
D), Ω blows up to order 1 at D, as wanted.

It remains to show that the round Tn are special Lagrangian for Ω. This is the same
as in [4, Proposition 5.2]. Namely, we take the Hamiltonian function on Sn given by
H(x, y, z) = |2xy−1|2 and consider its Hamiltonian vector field XH . It is symplectically
orthogonal to vertical tangent vectors because H is constant on the fibres of Πn and
is tangent to the level sets of H , that is to the fibres. So XH is the horizontal lift of
the tangent vector of γr , and so is tangent to Tn . The tangent space to Tn is spanned
by XH and a vector field tangent to the vanishing cycle, say ξ = (ix,−iy). Since
ιξΩ = ixdy+iydx

2xy−1 = id log(2xy − 1), we get Im(ξ,XH) = d log |2xy − 1|(XH) which is
zero because XH is tangent to the level set of H . Hence Tn is special Lagrangian.

Recall that the minimal Maslov number of a Lagrangian L in a symplectic manifold
M is defined to be the integer NL := min{µ(A) > 0|A ∈ π2(M,L)} where µ(A) is the
Maslov index.

We summarize the above discussion as:

Proposition 2.9 Tn is a monotone Lagrangian torus in (Sn, dθ), that is

2 ω(A) = τµ(A)

for any A ∈ π2(Sn,Tn) where τ > 0 is the monotonicity constant, a fixed real number
depending only on the path γ . The minimal Maslov index NTn = 2.

For n = 0, we get a monotone Lagrangian torus T0 ⊂ C2 , which is indeed the Clifford
torus ([4]) and for n = 1, we have a monotone Lagrangian torus T1 ⊂ T∗S2 . The
following proposition shows that one of the T1 is Hamiltonian isotopic to Polterovich’s
construction of a monotone Lagrangian torus in T∗S2 (see [3]).

Proposition 2.10 Under a symplectomorphism identifying S1 and T∗S2 , Polterovich
torus becomes one of the T1 .

Proof S1 is given by {z2 + 2xy = 1} in C3 . Under the exact symplectomorphism
z = z0, x = 1√

2
(z1 + iz2), y = 1√

2
(z1 − iz2) it is taken to C = {(z0, z1, z2) ∈ C3|z2

0 +

z2
1 + z2

2 = 1}. We take sj and tj to be real and imaginary parts of zj respectively, so that
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zj = sj + itj , and let s = (s0, s1, s2) and t = (t0, t1, t2). Note that the equations for S1

are |s|2 − |t|2 = 1 and 〈s, t〉 = 0.

Further, we take T∗S2 = {v ∈ R3, u ∈ R3|〈v, u〉 = 0, |v| = 1}. It is exact symplecto-
morphic to C via the map (v = s|s|−1, u = t|s|).

For a complex number written in polar form reiθ we say that θ is its phase and we note
that a vanishing cycle over the point z = z0 given by |x| = |y| can be alternatively
described by the condition that phase of z1 is equal to phase of z2 modulo π .

The Polterovich torus T is the geodesic flow of unit covectors over (1, 0, 0) ([3]).
Namely, let v = (v0, v1, v2) be a point in S2 . If v is neither the north nor the south pole,
there are exactly two points in T projecting to v. To find them, denote ~r = (v1, v2),
r = |~r|, so that v = (v0,~r). Then the cotangent vectors in the torus T projecting to v
are u = (−r, v0

r ~r) and −u = (r,− v0
r ~r).

Let’s find the coordinates (s, t) of the point in S1 corresponding to (v, u). Since

|u| = |s||t| = 1, we have |s|2 − |s|−2 = 1, so |s| =
√√

5+1
2 , so that s =

√√
5+1
2 v and

t =

√√
5−1
2 u. Note that this means z1 and z2 have the phases that are either equal

(if v1 and v2 have the same sign), or differing by π . The point (ẑ1, ẑ2) corresponding

to (v,−u) has real part
√√

5+1
2 v and imaginary part −

√√
5−1
2 u, and ẑ1 and ẑ2 also

have phases equal or differing by π . As (v1, v2) varies over a circle, the points

(v, u) and (v,−u) trace out the vanishing cycles over z0 = (
√√

5+1
2 v0,

√√
5−1
2 r) and

ẑ0 = (
√√

5+1
2 v0,−

√√
5−1
2 r). We note that the circles that are intersections of the

Polterovich torus with cotangent fibres over the north and south poles are vanishing

cycles over the points (
√√

5+1
2 , 0) and (−

√√
5+1
2 , 0).

Hence the Polterovich torus is in fact the union of vanishing cycles over the ellipse

z = (
√√

5+1
2 v0,

√√
5−1
2 r). Note that v2

0 + r2 = 1 means that the curve over which we

have the matching torus is the ellipse focal at ±1 and with eccentricity
√√

5−1
2 . This

curve can be lifted to the torus T as before with x(t) = y(t) = 1√
2
(1− γ(t)2), which can

be computed to be the same ellipse scaled down by
√

2, hence both x and y projections
enclose area π

2 , giving the monotonicity constant π + π
2 + π

2 = 2π , as expected.

Remark 2.11 As 2π > π+2, Remark 2.7 and Lemma 2.5 imply that T is Hamiltonian
isotopic to one of the round matching tori.
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2.3 Floer cohomology of matching tori

Since Tn is monotone of minimal Maslov index 2, its self-Floer cohomology is well-
defined and can be computed using the pearl complex. This complex was first described
by Oh in [31] (see also Fukaya [16]) and was studied extensively in the work of Biran
and Cornea (see [7], [8] for detailed accounts).

Before proceeding to the computation proper, we shall give a brief review of the pearl
complex. We generally follow [7] and [9] to which the reader is referred for details,
however we will adapt the conventions of Floer cohomology, rather than Floer homology
(see also [43]).

Given a monotone Lagrangian L inside a geometrically bounded symplectic manifold
M (Stein manifolds in particular are geometrically bounded, see [13, Section 2] for a
definition and discussion), the pearl complex of L is a deformation of its Morse complex
by quantum contributions coming from holomorphic disks with boundary on L. In
order to define this complex, we take the coefficient ring to be the Laurent polynomials
Λ = Z2[t, t−1], fix a Morse function f on L with set of critical points Crit(f), a
Riemannian metric ρ on L, and an almost-complex structure J on M compatible
with our symplectic form ω . The pearl complex has the underlying vector space
C∗(L; f , ρ, J) = (Z2〈Crit(f)〉 ⊗Λ), which inherits a relative Z-grading coming from the
Morse index grading on Z2〈Crit(f)〉 and the grading given on Λ by deg t = NL .

We define a differential on C∗(L; f , ρ, J) by counting pearls - sequences of gradient
flowlines of f interspersed with holomorphic disks. Namely, denote by Φt , −∞ ≤
t ≤ ∞ the gradient flow of (f , ρ). Given a pair of points x, y ∈ L and a class
0 6= A ∈ H2(M,L) consider for all l ≥ 0 the sequences (u1, . . . , ul) of non-constant
J-holomorphic maps ui : (D, ∂D)→ (M,L) with

(i) gradient trajectory of possibly infinite length t′ from x to u1 i.e. Φt′(x) = u1(−1)
(ii) gradient trajectories of length ti between ui and ui+1 i.e. Φti(ui(1)) = ui+1(−1)

(iii) gradient trajectory of possibly infinite length t′′ from ul to y i.e. Φt′′(ul(1)) = y
(iv) [u1] + · · · [ul] = A

Two such sequences (u1, . . . , ul) and (u′1, . . . , u
′
l′) are equivalent if l = l′ and each

u′i is obtained from ui by precomposing with holomorphic automorphism of D that
fixes 1 an −1. We define the moduli space Pprl(x, y; A; f , ρ, J) to be the space of such
sequences modulo equivalence. In addition, for A = 0 we define Pprl(x, y; A; f , ρ, J) to
be the space of unparametrized trajectories of the gradient flow Φt from x to y. If x and
y are critical points of f , then the expected dimension δprl(x, y; A) of Pprl(x, y; A; f , ρ, J)
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is |y| − |x|+ µ(A)− 1.

Theorem 2.12 (c.f. [7, Theorem 2.1.1]) For a generic choice of the triple (f , ρ, J)
we have:

• For all x, y ∈ Crit(f) and A ∈ H2(M,L) such that δprl(x, y; A) = 0, the moduli
space Pprl(x, y; A; f , ρ, J) is a finite number of points and we can define d(x) =∑

y,A

(
#Z2Pprl(x, y; A; f , ρ, J)

)
t
µ(A)
NL y.

• Extending d to C∗(L; f , ρ, J) linearly over Λ we get a chain complex (i.e. d2 = 0),
and the homology of this chain complex is independent of the choices of J, f , ρ.

• There is a canonical (graded) isomorphism H∗(C∗(L; f , ρ, J))→ HF∗(L; Λ).

Remark 2.13 Let us make a remark on the requirement in the above theorem that
the triples (f , ρ, J) be generic. What we require is to have the pair (f , ρ) be Morse-
Smale, making all stable and unstable manifolds of f transverse and hence making
the moduli spaces of gradient trajectories smooth, and to have J that makes moduli
of holomorphic disks with boundary on L and two boundary marked points regular;
in addition we require all the evaluation maps from the moduli spaces above into our
symplectic manifold M to be transverse in tuples, so that the corresponding moduli
spaces Pprl(x, y; A; f , ρ, J) are transversally cut out. Note that only the moduli spaces
that appear in building Pprl(x, y; A; f , ρ, J) with expected dimension δprl(x, y; A) ≤ 1
need to be regular. What we will use in our computation is a complex structure that
is regular for disks of Maslov index 2 and a generic Morse-Smale function; this is
sufficient for a monotone two-dimensional Lagrangian torus.

Remark 2.14 HF∗(L; Λ) is a unital (associative) ring with a relative Z-grading, where
the ring structure is given by counting pseudoholomorphic triangles of Maslov index zero.
We can indeed fix an absolute Z-grading by requiring that the unit lies in HF0(L; Λ).
Similarly, the relative Z-grading at the chain level C∗(L; f , ρ, J) can be upgraded to an
absolute Z-grading by requiring that the generators of Morse index 0 lie in degree 0.
Finally, note that equivalently we could have worked with HF∗(L;Z2) by setting t = 1
in the definition of the chain complex. We then only get Z/NL -grading. On the other
hand, HF∗(L;Z2) and HF∗(L; Λ) carry the same information since HF∗(L; Λ) is NL

periodic in the sense that HF∗+NL(L; Λ) = t · HF∗(L; Λ).

Remark 2.15 The Lagrangians Tn are tori, hence they are orientable and can be
equipped with spin structures. This would allow us to take Λ = Z[t, t−1] as our
coefficient ring. Doing so would require picking orientations and spin structures on
Tn , and paying attention to the induced orientations of moduli spaces of discs in
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Floer cohomology computations. We avoid this refinement as it is not needed for our
application.

Let L be a monotone Lagrangian in (M, ω) with minimal Maslov number NL ≥ 2.
In this case, following Biran and Cornea (Section 6.1.1 [7]), we define a homology
class c(L) ∈ H1(L;Z2) as follows: Let J be an ω -compatible almost complex structure
such that all the holomorphic disks of Maslov index 2 are regular (call such J regular).
Monotonicity ensures that there are only finitely many homology classes in H2(M,L)
represented by a holomorphic disk and an application of a lemma of Lazzarini ([25])
shows that all such disks are simple. Thus, the set of regular J is of second category
in the space of compatible almost complex structures. Pick a (generic) point p ∈ L
such that the number of Maslov index 2 holomorphic disks u : (D, ∂D)→ (M, L) with
p ∈ u(∂D) is finite, call this number l . Then the boundaries of these holomorphic disks
represent homology classes (counted with multiplicity) c1, . . . , cl ∈ H1(L;Z2) and the
homology class c(L) is simply the sum c(L) =

∑l
i=1 cl . Standard cobordism arguments

show that c(L) is independent of J and p.

The pearl complex model for self-Lagrangian Floer cohomology admits a degree filtration
as follows: F k(C∗(L; f , ρ, J)) = (Z2〈Crit(f)〉 ⊗ Fk(Z2[t, t−1])), where F kZ2[t, t−1] =

{P ∈ Z2[t, t−1]|P(t) = aktk + ak+1tk+1 + . . .}. The differential clearly respects this
filtration and the degree preserving part corresponds to pearly trajectories with A = 0,
which are indeed Morse trajectories. Therefore, one obtains a spectral sequence from
H∗(L;Z2) to HF∗(L;Z2) (this is known as Oh’s spectral sequence [30]). Biran and
Cornea’s careful analysis of the algebraic structure of this spectral sequence shows that
in our situation the class c(T) completely determines the Floer cohomology HF∗(T;Z2)
additively, which we record as follows:

Proposition 2.16 ([7, Proposition 6.1.4]) Let T be a monotone Lagrangian 2-torus
in a symplectic 4-manifold (S, ω) with minimal Maslov number NT ≥ 2 .
If c(T) = 0, then HF∗(T;Z2) ' H∗(T;Z2) (as Z2 -graded vector spaces).
Conversely, if c(T) 6= 0, then HF∗(T;Z2) = 0.

Remark 2.17 If we only wanted to show HF∗(L;Z2) 6= 0 when c(L) = 0, we could
argue as follows: We pick a Morse function f on L with a unique maximum, call
it m. Since it represents a generator for H2(L), for degree reasons, it will survive
in HF∗(L;Z2) if ∂(m) = 0. On the other hand, the knowledge of Maslov index 2
disks through m allows us to compute ∂(m) = PD(c(L)) · t where PD(c(L)) is a
chain consisting of linear combinations of index 1 critical points of f representing the
Poincaré dual of c(L) ∈ H1(L). Hence, if c(L) = 0, then m represents a non-trivial
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class in HF∗(L;Z2). Proposition 2.16 shows that when L is a torus, this is actually
equivalent to HF∗(L;Z2) ' H∗(L;Z2)

In view of Proposition 2.16, we determine the Floer cohomology of the tori Tn via a
calculation of c(Tn).

Lemma 2.18 c(T0) 6= 0 and c(Tn) = 0 for n > 0.

Proof Recall that if Tn = Tγ is a matching torus over a curve γ and γ bounds the
disc Dγ ⊂ C, then for a J making πn holomorphic, by maximum principle, the sections
have to project to Dγ . So, we will not distinguish Πn : Sn 7→ C and its restriction
Πn|Π−1

n (Dγ) 7→ Dγ when counting holomorphic sections of Πn with boundary on Tγ .

First we note that, if we have an isotopy of γt in C \ Critv(Πn) such that τγt = const,
so that the isotopy lifts to a Hamiltonian isotopy Ft of Tγt bounding discs Dt , as
in Corollary 2.5, then Ft gives identifications of all H1(Tγt ,Z2) and the moduli
spaces of sections Πn|Π−1

n (Dt) 7→ Dt with boundary on Tγt representing a given class
a ∈ H1(Tγt ,Z2) of (minimal) Maslov index 2 are cobordant. This can be seen as follows:
For fixed t0 < t1 let Jt0 and Jt1 be regular almost complex structures making the moduli
spaces of Maslov index 2 sections Mti = M(Πn,Tγti

, Jti) regular one-dimensional
manifolds. Consider the space J of almost complex structures in the total space which
are simultaneously regular for counting sections in M(πr,Tγt ) for all t ∈ [t0, t1] and
makes Πn holomorphic, this is a subset of second category in the space of almost
complex structures on Sn (since [t0, t1] is compact and it is of second category for
a fixed t). A generic path Jt of almost complex structures in this space connecting
Jt0 and Jt1 gives a smooth cobordism Mt = M(Πn,Tγt , Jt) of moduli spaces Mt0
and Mt1 since at no point during the isotopy Tγt bounds Maslov index ≤ 0 disks.
Furthermore, since the matching tori Tγt are parallel transported to each other, we
get a bordism of the images of the evaluation maps evt : Mt → Tγt by considering
the parametrized evaluation map ev : [t0, t1]×Mt → Tγt0

where we use the parallel
transport to identify Tγt with Tγt0

. Therefore, for the purpose of algebraically counting
of pseudoholomorphic sections of Πn with boundary on Tγ we are free to move γ with
such an isotopy.

Now, consider the deformation γt as in Figure 1 where γ0 = γ and γ1 = α#β such
that α is an embedded circle that encloses only one critical value and β encloses the
remaining n critical values.

To be precise, α and β are closed embedded circles in the base C that intersect at
a unique point p and γt is an isotopy through embedded curves with τγt = const.
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α

β

γ

Figure 1: Deformation of γ

and γ1 is very close to α ∨ β (we can find such an isotopy by Lemma 2.2). Let
Dα , Dβ be the disks that α and β bound. Then we can consider the Lefschetz
fibrations πα = Πn|Π−1

n (Dα) 7→ Dα and πβ = Πn|Π−1
n (Dβ) 7→ Dβ . We also

set πγ1 = Πn|Π−1
n (Dγ1) 7→ Dγ1 . Now, we can deform γ1 to a sufficiently close

neighborhood of α ∨ β so that the Lefschetz fibration πγ1 is a boundary sum of the
Lefschetz fibrations πα and πβ and the matching torus Tγ1 is obtained as a connect sum
Tα#Tβ . To be careful, one first deforms the symplectic structure in a neighborhood of
the fibre above p, so that it is a trivial symplectic bundle F × [−1, 1]2 where F is the
fibre, and the piece of the Lagrangian torus over γ1 becomes two trivial circle bundles
over the intervals {±ε}× [−1, 1]. One then surgers the Lagrangian boundary condition
within this trivialization so that the outcome is Tα and Tβ . (For more details, we refer
to Proposition 2.7 and the preceding discussion in [39] for the details of boundary sum
of Lefschetz fibrations which carry Lagrangian boundary conditions).

Now, let M(πα,Tα, Jα) be the moduli space of Jα holomorphic sections of πα with
boundary condition Tα and similarly let M(πβ,Tβ, Jβ) be the corresponding moduli
space for β . Let V = Tα ∩ Tβ is the vanishing cycle on the fibre Π−1

n (p) and,
evα :M(πα,Tα, Jα) → V and evβ :M(πα,Tβ, Jβ) → V are evaluation maps. The
basic gluing theorem [[39] , Proposition 2.7] proves that if Jα and Jβ are regular and
evα and evβ are mutually transverse, then there exists a complex structure J so that
M(πγ1 ,Tγ1 , J) is regular and is given as a fibre product of

M(πγ1 ,Tγ1 , J)k =
⊔

p+q−1=k

M(πα,Tα, Jα)p ×V M(πβ,Tβ, Jβ)q

where the fibre product is taken with respect to the evaluation maps evα and evβ and the
superscripts are dimensions. Recall that we are interested in counting Maslov index 2
disks with boundary on Tγ , which live in the moduli space of index µ+dim(Tγ)−3 = 1.
Hence, according the gluing result above, it suffices to understand the Maslov index 2
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disks for Tα and Tβ .

In fact, by induction it suffices to understand only the base case M(πα,Tα, Jα), i.e.
when only one critical point is enclosed, since if β encloses more than one critical point,
we can apply the above deformation to β separately to break it up into smaller pieces
until each piece encloses only one critical point, see Figure 2 for an illustration.

X

X

X

X

Figure 2: Inductive deformations

To tackle the base case, one applies a degeneration argument due to Seidel [39, Section
2.3]. Namely, for convenience, we can assume by an isotopy through curves with
fixed τ = τα , α is a round circle by the argument in the beginning of the proof. Let
Dr be disks of radius r ∈ (0, a] where Da = Dα . One considers the restrictions
πr : πα|π−1

α (Dr)→ Dr with Lagrangian boundary conditions given by matching tori Tr

above ∂Dr . Exactly the same cobordism argument that we have given in the beginning
of the proof shows that the algebraic count of pseudoholomorphic sections of πα with
boundary Tr does not depend on r when we vary r in a compact interval (Note that
again, none of the tori Tr bound a Maslov index ≤ 0 holomorphic disk). Now, Seidel
proves a compactness result when as one lets r → 0 ([39, Lemma 2.15]) to conclude
that when r is sufficiently small, the moduli space of sections can be computed using a
model Lefschetz fibration. π : C2 → C given by π : (x1, x2) ∈ C2 7→ (x2

1 + x2
2) ∈ C as

in [[39], eq. (2.18)]. Lemma 2.16 of [39] explicitly computes all sections of π with
boundary on Tγr ⊂ C2 , where γr is the round circle of radius r centered at 0. These
are the maps from closed disk of radius s to C2 given by

ua,±(w) = (r−1/2aw + r1/2ā,±i(r−1/2aw− r1/2ā))

for a ∈ C with |a| = 1
2 so this space is diffeomorphic to S1 t S1 . Moreover by the

same lemma this moduli space of sections is regular (for the standard complex structure
on C2 ).

Following [4], we note that T0,γr ∈ C2 is in fact the Clifford torus |x| = |y| = r
1
2 .

From the above explicit description, the images of the boundaries of the two families
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of holomorphic disks on T0 are given by x = const. and y = const. (The same two
families were obtained as the outcome of the computation in [12], Theorem 10.1. This
again shows that these disks are regular by [12], Theorem 10.2.) Note that there are
exactly two holomorphic sections with boundary through any given point p ∈ T0 and
their boundaries intersect transversely at a single point. Therefore, the homology classes
in H1(T0) represented by the boundaries of these two families are of the form L and
L + V , where both L and L + V project to the generator of H1(S1) under Π and V is
the class of the vanishing cycle.

Thus, we have determinedM(πα,Tα, Jα) where α encloses only one critical point and
Jα is the standard complex structure (which is regular) and the computation also gives
the evaluation map evα . It remains to perform the inductive step of the computation to
compute the Maslov index 2 sections of Tγ

As discussed above the gluing theory shows that the count of sections for (Sn,Tγ) can
be understood as the count of sections for the n-fold boundary connect sum of (S0,T0),
which will be denoted by (Σn, τn). To describe the holomorphic disks in it we need a
basis for H1(τn). One element of the basis can be taken to be the vanishing cycle Vn .
The choice of a second basis element is obtained a posteriori by the following lemma.

Lemma 2.19 Through any point on τn there are 2n+1 disks of Maslov index 2 in
(Σn, τn), and there exist elements Ln ∈ H1(τn) which together with Vn form a basis of
H1(τn) and such that there are

(n+1
k

)
disks with boundary class kVn + Ln .

Proof We prove this by induction. As discussed above, the base case is the Clifford
torus, where there are indeed 2 holomorphic disks through every point, in classes whose
difference is V1 . These moduli spaces are regular for standard complex structure on
Cn . Call one of them L1 and another L1 + V1 . The inductive step is given by using the
Seidel’s gluing formula [39], Proposition 2.7 together with the base case. Each of the
2n disks given by induction hypothesis in (Σn−1, τn−1) glues to either of the 2 disks in
(S0,T0). By the same proposition, the glued up moduli spaces are regular. Denoting by
Ln the class in H1(τn) obtained by gluing Ln−1 and L1 , we have that the number of
disks with boundary in class kVn + Ln is

(n
k

)
+
( n

k−1

)
=
(n+1

k

)
, as claimed.

Completion of the proof of Lemma 2.18 : We conclude that the total boundary class of
Maslov index 2 disks is given by

∑
k

(n+1
k

)
(kVn + Ln) = 2n+1Ln + (n + 1)2nVn , which

is 0 ∈ H1(τn;Z2) for all n > 0 and [V0] 6= 0 ∈ H1(τ0;Z2) for n = 0. Since the moduli
spaces of discs in (Σn, τn) and (Sn,Tn) are identified, it follows that c(T0) 6= 0 and
c(Tn) = 0 for n > 0.
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Proposition 2.20 HF∗(Tn;Z2) ' H∗(Tn;Z2) for n > 0.

Proof The proof follows immediately from Proposition 2.16 together with Lemma
2.18.

Remark In view of Proposition 2.10, Proposition 2.20 generalizes a theorem of Albers
and Frauenfelder from [3] where the authors computed HF∗(T1;Z2).

3 The rational homology balls Bp,q

3.1 A finite group action on the An Milnor fibre

As before, let p > q > 0 be two relatively prime integers. Let Zp = {ξ ∈ C : ξp = 1}
be the cyclic group. Let us consider a one-parameter smoothing of the isolated surface
singularity of type Ap−1 , i.e. we consider the hypersurface singularity given by
zp + 2xy = 0 ⊂ C3 and the smoothing of this singularity given by F : C3 → C , where
F(x, y, z) = zp + 2xy. We let Γp,q to denote the following action of Zp on C3 given
by

ξ : (x, y, z)→ (ξx, ξ−1y, ξqz)

Clearly, the action is free outside of the origin and the function F is invariant under the
action. Indeed, we get a QHD-smoothing of the singularity F−1(0)/Γp,q . The latter is
known to be the cyclic quotient singularity of type (p2, pq− 1) ([45] Example 5.9.1).
We denote the Milnor fibre F−1(1)/Γp,q by Sp−1/Γp,q = Bp,q .

The action Γp,q can be visualized easily in terms of the Lefschetz fibration Π : Sp−1 → C.
Namely, Zp acts freely by lifting the rotation of the base of the Lefschetz fibration
around the origin by an angle of 2πq

p , as well as rotating the fibres by an angle of
2π
p .

Note that this makes it clear that Bp,q is a rational homology ball. On the other hand, since
Sp−1 is simply-connected, we have π1(Bp,q) = Zp . Note also that the Stein structure on
Sp−1 induces a Stein structure on Bp,q . Recall that Bp,q is a smoothing of the cyclic
quotient singularity of type (p2, pq−1), that is C2/Zp2 where Zp2 = {ξ ∈ C : ξp2

= 1}
acts by ξ : (w1,w2) → (ξw1, ξ

pq−1w2). Therefore the boundary of Bp,q is the lens
space L(p2, pq − 1). The Stein structure on Bp,q induces a contact structure ξp,q on
L(p2, pq − 1), which is also filled by the singular fibre of the deformation. This can
in turn be resolved to obtain a Milnor filling by the resolution of the cyclic quotient
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singularity, which we denote by Cp,q . Cp,q is given by the linear plumbing graph
below:

−bk −bk−1 −b1

Figure 3: Cp,q

Thus, Cp,q is the linear plumbing of disk bundles of over the 2-sphere with Euler
number −bi . Here bi are obtained by the unique continued fraction expansion

p2

pq−1 = [bk, bk−1, . . . , b1] with all bi ≥ 2.

In fact, we claim that the Stein surfaces Bp,q are exactly those that are used by Fintushel-
Stern (and J. Park) in rational blow-down operation. Namely, let K(m, n) denote the
2-bridge knot, whose double branched cover is the lens space L(m, n). It is known that
K(p2, pq− 1) is slice (in fact ribbon) for p > q > 0 relatively prime (see for ex. [27]).
Fintushel-Stern’s rational homology balls ([15]) are given by the double branched cover
of the four-ball branched over the slice disk for K(p2, pq− 1).

Proposition 3.1 Bp,q is diffeomorphic to double branched cover of D4 branched along
the slice disk bounding K(p2, pq− 1).

Proof As we observed above, Cp,q yields a Milnor filling of the contact structure
(L(p2, pq− 1), ξp,q). Therefore, by [26], the contact structure ξp,q must be universally
tight. (This also follows from the fact that ξp,q is the induced contact structure on
the boundary of the cyclic quotient singularity of type (p2, pq − 1)). Up to contact
isomorphism, it is known that there is a unique universally tight contact structure on
L(p2, pq−1). Furthermore, Lisca has given a classification result for the diffeomorphism
types of the fillings of the tight contact structures on lens spaces ([27]). It follows from
this classification that in the case of (L(p2, pq − 1), ξp,q), there are two possibilities
for the diffeomorphism types of symplectic fillings, and these classes are realized by
the manifolds Cp,q and the double branched cover of D4 branched along the slice disk
bounding K(p2, pq− 1). The latter must then be diffeomorphic to Bp,q since Bp,q is a
Stein filling which is not diffeomorphic to Cp,q .

We have equipped the manifold Bp,q with the Stein structure induced from Sp−1 given
as the finite free quotient of the Stein structure on Sp−1 . This is the same as the Stein
structure on Bp,q thinking of it as an affine algebraic variety because Bp,q is an algebraic
quotient of Sp−1 . Note that there exists a unique Stein structure up to deformation on
Sp−1 . This follows, for example, from [46]. Therefore, it seems likely that Bp,q in
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fact has a unique Stein structure, however we do not know how to prove or disprove
this. On the other hand, any putative exotic Stein structure on Bp,q would lift to the
standard Stein structure on Sp−1 . Therefore, for our arguments, we do not need to
make precise which Stein structure is being considered on Bp,q . Note also that the same
reasoning shows that any Stein structure on Bp,q would have to fill the unique (up to
contact isomorphism) universally tight contact structure.

3.2 Legendrian surgery diagram of Bp,q

In this section, we construct a Stein structure on Bp,q via Legendrian surgery on a
Legendrian knot on S1 × S2 . We see from our description that the p-fold cover of
the surgery diagram that we depict gives a surgery diagram of the Stein structure on
Sp−1 .

Recall that the Stein structure on Sp−1 can be drawn as in top figure of Figure 4 starting
from the Lefschetz fibration Π. It is understood that all the framings are given by
tb− 1 framing, where tb denotes the Thurston-Bennequin framing. From the Lefschetz
fibration view, the 1-handle can be understood as the thickening of the fibre over the
origin and the 2-handles correspond to thimbles over the linear paths connecting the
origin to the critical values (pth roots of unity).

Now, we can apply q full negative twists around the 1-handle, which would change
the smooth framing of individual handles from −1 to −1− q, and this can be drawn
as in the middle figure of Figure 4, where there are p twisted handles which have
tb−1 = −1−q, as wanted. In other words, the middle figure also gives a Stein structure
on Sp−1 and since there is a unique Stein structure on Sp−1 up to Stein deformation, we
can in fact work with the middle figure. The advantage of doing this is that it allows us
to see the Γp,q action on the diagram. Namely, it sends the 1-handle to the quotient
1-handle and translates the attaching circles of the 2-handles (in the horizontal direction
as drawn). The bottom figure in Figure 4 depicts the quotient diagram for the action
Γp,q on Sp−1 yielding Bp,q . (See Section 6.3 [18] for a discussion of finite covers of
handlebody diagrams). Here, there is a unique 2-handle that passes through the 1-handle
p times and it has framing tb− 1 = −pq− 1.

Remark 3.2 The smooth handlebody description of Bp,q consisting of just one 1-
handle and one 2-handle seems to be not widely known for q > 1 (see Figure 8.41 in
[18] for q = 1 which matches with the above picture) . Here, we provide not only a
smooth handlebody description but also a Legendrian realization of the attaching circle
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Figure 4: Legendrian surgery diagrams: Sp−1 (top and middle), Bp,q (bottom)

of the 2-handle as a Legendrian knot in S1 × S2 such that the smooth framing is given
by tb− 1, hence this description equips Bp,q with a Stein structure (see [18] Chapter
11). From our description, it also follows that the Stein structure that we obtain this
way is the same as the Stein structure induced from Sp−1 via the action Γp,q .

3.3 Lagrangian submanifolds of Bp,q

The exact Lagrangian submanifolds of Sp−1 has been studied extensively. We will use
the understanding provided by Ritter ([34]) and Ishii, Ueda and Uehara ([21], [22]) to
prove the following theorem:

Theorem 3.3 For p 6= 2, there does not exist any closed exact Lagrangian submanifold
in Bp,q .

Before we give a proof of this theorem, we will make it clear what knowledge of exact
Lagrangian submanifolds in Sp−1 will be needed. In [34], it is proven using symplectic
cohomology with twisted coefficients that every closed exact Lagrangian submanifolds
in Sp−1 is diffeomorphic to S2 . Since the intersection form on H2(Sp−1) is negative
definite, and the homology class of an orientable closed Lagrangian submanifold L in a
Stein surface satisfies [L] · [L] = −χ(L), it follows easily that orientable closed exact
Lagrangians can only be sphere or tori. Ritter’s result tells us that in fact any closed
exact Lagrangian in Sp−1 has to be orientable, moreover it cannot be a torus.
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Note that there is an abundance of inequivalent exact Lagrangian spheres in Sp−1

provided by the matching sphere construction. Ishii, Ueda and Uehara’s results from
[22, Lemma 38] (which in turn depends on [21]) imply that in the exact Fukaya
category of Sp−1 any spherical object is isomorphic to a matching sphere, Sc where
c : [0, 1] → C denotes the corresponding embedded path connecting critical values
of the Lefschetz fibration Π : Sp−1 → C. More precisely, if L,L′ ⊂ Sp−1 is an exact
Lagrangian submanifold, we know from [34] that they are spheres (which are indeed
spherical objects), hence by [21], [22] they are isomorphic to matching spheres Vc , Vc′

where c, c′ : [0, 1]→ C denote the corresponding paths. This is useful as it implies that
HF∗(L, L′) ' HF(Vc,Vc′). Informally, for the purpose of Floer theory, one can pretend
that every exact Lagrangian submanifold of Sp−1 is a matching sphere. Ishii, Ueda and
Uehara’s result uses homological mirror symmetry to get a quasi-isomorphic model for
the exact Fukaya category of Sp−1 (this makes use of a formality result proved in [42])
and uses sheaf theoretical arguments on the mirror category to characterize spherical
objects (see also the discussion in [40, Section 3b]).

Proof of Theorem 3.3 Let L be a closed exact Lagrangian submanifold in Bp,q . Then
the preimage L′ of L in Sp−1 by the quotient map is a closed exact Lagrangian
submanifold of Sp−1 (possibly disconnected). By [34, Theorem 52], L′ is a union
of spheres, and since L is covered by each connected component of L′ , L is either a
sphere or an RP2 . A Lagrangian sphere has self-intersection −2, and hence represents
a non-torsion class in H2(Bp,q). This is impossible as H2(Bp,q) = 0. On the other hand,
a Lagrangian RP2 would have to be double covered by some number of Lagrangian
spheres in Sp−1 . This is an immediate contradiction if p is odd.

Suppose p = 2r is even. Let R be a generator of the cyclic group Zp acting on Sp−1 .
Then L′ is a disjoint union of r Lagrangian spheres V,R(V), . . .Rr−1(V) and Rr maps
each of these spheres onto themselves so that the quotient L is an RP2 .

We now use Ishii, Ueda and Uehara’s results from [21], [22] discussed above to replace
V with an isomorphic object Vc in the exact Fukaya category of Sp−1 where Vc is a
matching sphere for a possibly quite complicated path c. Now, Rr is the antipodal map,
Rr(x, y, z) = (−x,−y,−z). Hence, RrV is represented by the matching sphere over
the path −c. Since RrV = −V this means V−c and −V are isomorphic in the exact
Fukaya category, which by [24] implies that c and −c are isotopic (as unoriented paths)
by a compactly supported isotopy in C that fixes D = {e2πik/p, k = 0, 1, . . . p − 1}
pointwise. In particular, this implies that if c(0) = e2πiκ/p then c(1) = −e2πiκ/p .

Since we assumed p > 2, V and R(V) are disjoint exact Lagrangian spheres, and
we have 0 = HF∗(V,R(V)) = HF∗(Vc,R(Vc)). Note that R(Vc) is simply Vc′ where
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c′(t) = e2πiq/pc(t) and by [24, Lemma 6.14] , we have that rank of HF∗(Vc,Vc′) is
2ι(c, c′) where ι(c, c′) is the geometric intersection number, i.e. minimal possible
number of intersections among representatives of the isotopy class of c and c′ with
respect to a compactly supported isotopy in C that fixes D pointwise. The following
lemma about plane geometry of curves proves that ι(c, c′) cannot be zero for p > 2,
which gives HF∗(Vc,Vc′) 6= 0 contradicting the fact V and R(V) are disjoint and
completes the proof of non-existence of exact Lagrangian submanifolds.

Lemma 3.4 Let p > q > 0 be relatively prime integers, and p = 2r > 2 be an
even number. Let D = {e2πik/p : k = 0, 1, . . . , p − 1}. Let c : [0, 1] → (C,D) be
an oriented embedded curve such that c(0) = e2πiκ/p and c(1) = −e2πiκ/p for some
κ ∈ {0, 1, . . . , p − 1}, and assume that the curve −c(t) is isotopic to c(−t) by a
compactly supported isotopy in C fixing D.

Further, let c′ : [0, 1] → (C,D) be the curve given by c′(t) = R(c(t)) = e2πiq/pc(t).
Then the geometric intersection number of c and c′ (the minimal number of intersections
among representatives of the isotopy classes with respect to a compactly supported
isotopy in C fixing D) is non-zero.

Proof For curves with ends on different points of D we would like to replace the
geometric intersection number ι(α, β) by an algebraic one. Formally, we can consider
C ∪ {∞} and take out small discs around the points of D and , to get Σ - a compact
manifold with p boundary circles A1, . . .Ap (which we orient counterclockwise) on
which the cyclic group Zp still acts, with the generator R sending Ai to Ai+q (as usual
Ap+k = Ak for all k). We pair up the opposite boundary components Bi = Ai ∪ Ai+rq

(Note that Ai+rq = Rr(Ai) is the circle that is diagonally opposite of Ai ). Then, our curve
c represents a class in H1(Σ,Bκ) and c′ represents a class in H1(Σ,Bκ+1). Lefschetz
duality followed by the cup product gives a pairing:

〈 , 〉 : H1(Σ,Bµ)× H1(Σ,Bν)→ H2(Σ, ∂Σ) = Z

Geometrically, for transverse curves α with [α] = a and β with [β] = b, 〈a, b〉 is the
number of intersections of α and β counted with signs and in particular if it is non-zero
then ι(α, β) is also non-zero. We claim that 〈[c], [c′]〉 6= 0, and the lemma follows
from this.

To compute 〈[c], [c′]〉, write [c] = l + b where l is the class represented by the linear
path l(t) = e2πiκ/p(1− t)− e2πiκ/pt connecting the endpoints of c. Then b lies in the
image of H1(Σ) of the natural map F : H1(Σ) 7→ H1(Σ,Bκ) in the homology exact
sequence of the pair (Σ,Bκ), which is to say can be represented by union of closed
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curves in Σ. In fact, since Ai for i = 1, . . . , p form a basis of H1(Σ), we can write
b = F(

∑
aiAi) and as the map F above has kernel spanned by Aκ and Aκ+qr , there is a

unique such representation with aκ = aκ+qr = 0.

Note that since −c(t) is isotopic to c(−t), in particular they are homologous, so
Rr[c] = [−c] = −[c] (here by abuse of notation R is used to denote the action of the on
Σ sending H1(Σ,Bµ) to H1(Σ,Bµ+1), and the last minus sign comes form orientation
reversal).

Combined with Rrl = −l, we have Rrb = −b, that is in the representation b =

F(
∑

aiAi) we must have aj = −aj+rq . Now, [c′] = R[c] = Rl + Rb and we compute:

〈[c], [c′]〉 = 〈l,Rl〉+ 〈l,Rb〉+ 〈b,Rl〉+ 〈b,Rb〉
= 1 + (aκ+q − aκ+q+rq) + (aκ−q+rq − aκ−q) = 1 + 2aκ+q − 2aκ−q

which is an odd integer, hence is non-zero; as desired.

Remark 3.5 For p = 2, note that Sp−1 is exact symplectomorphic to T∗S2 and Bp,q

is exact symplectomorphic to T∗RP2 which indeed has its zero section as an exact
Lagrangian submanifold.

Having dealt with exact Lagrangian submanifolds, we next look for essential Lagrangian
tori. We observe that the tori Tp−1 ⊂ Sp−1 considered in Section 2 are invariant under
the action Γp,q . We will henceforth be concerned with the Floer cohomology of the
quotient tori in Bp,q . We denote these tori by Tp,q .

Proposition 3.6 HF∗(Tp,q;Z2) is non-zero (and hence is isomorphic to H∗(Tp,q;Z2)
by Proposition 2.16).

Proof Start with a pearl complex C∗(Tp,q; f , ρ, J) of Tp,q , given by some generic
Morse function f and metric ρ on Tp,q and an almost-complex structure J on Bp,q .
We can assume without loss of generality that f has a unique maximum, giving rise to
unique top degree generator m. Consider the lifted structures f ′ , ρ′ on Tp−1 and J′ on
Sp−1 . Then since every pearly trajectory in Sp−1 projects to one in Bp,q , and conversely,
every pearly trajectory in Bp,q lifts to Sp−1 uniquely given a starting point, if the triple
(f , ρ, J) is regular for (Bp,q,Tp,q), the triple (f ′, ρ′, J′) is regular for (Sp−1,Tp−1).

We see that C∗(Tp−1; f ′, ρ′, J′) has p top degree generators m1, . . .mp , the lifts of m,
with Rmi = mi+1 where R is a generator of the cyclic group Zp acting on Sp−1 (we
take mp+1 = m1 ). We note that by equivariance Rd′mi = d′(Rmi), and since the rank of
the top degree homology is 1, the element M with d′M = 0 must have RM = M (since
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we are working over Z2 coefficients). The only such element is M =
∑

mi . Then
again, by the correspondence between the pearly trajectories, d′M is the (total) lift of
dm. Since this is 0, then so is dm, hence m survives in cohomology.

Proposition 3.7 If T is a monotone Lagrangian 2-torus in a symplectic 4-manifold X ,
and HF∗(T;Z2) ' H∗(T;Z2), then SH∗(X) is not zero.

Proof This is essentially [38, Proposition 5.2]. We only comment on the necessary
modifications. Firstly, note that by Bockstein long exact sequence it suffices to show
that SH∗(X;Z2) 6= 0 (cf. [1, Remark 1.4]).

By using no auxiliary connection in all our Floer-theoretic constructions we avoid
the need to work over coefficient ring K ⊃ Q, and use Z2 instead; additionally the
fact that Tp,q is monotone, allows us to forego the Novikov ring coefficients and
lift the requirement in [38, Proposition 5.2] that T be Bohr-Sommerfeld. Finally,
being homologically essential over Z2 coefficients is by Proposition 2.16 the same as
HF∗(Tp,q;Z2) 6= 0. This allows one to repeat the arguments of Sections 5a and 5b of
[38] to conclude SH∗(X;Z2) 6= 0 just as in [38, Proposition 5.1].

Corollary 3.8 SH∗(Bp,q) is non-zero, in other words, Bp,q is non-empty.

Remark 3.9 Another way to prove SH∗(Bp,q) is non-zero goes as follows: Since Sp−1

has exact Lagrangian submanifolds (matching spheres), we conclude from Theorem
1.2 that SH∗(Sp−1) is non-zero. Now, there are obvious pull-back (total preimage) and
push-forward (image) maps on symplectic cohomology for unbranched covers which
commute with the maps from ordinary cohomology to symplectic cohomology, which
shows that SH∗(Bp,q) 6= 0. Our method of proof above on the other hand yields a
geometric reason for the non-vanishing of SH∗(Bp,q).

4 Concluding Remarks

An exact Lefschetz fibration on Bp,q can be found in [14]. This Lefschetz fibration
equips Bp,q with a Stein structure, and Corollary 3.8 implies that the symplectic
cohomology is non-zero. It would be interesting to use Seidel’s computational methods
([37]) to compute the symplectic cohomology of Bp,q starting from this Lefschetz
fibration. Alternatively, Bp,q can be constructed by Weinstein handle attachments with
one 1-handle and one 2-handle to D4 as in Section 3.2. The methods developed in [6]
might be useful in computing the symplectic cohomology from this description.
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Let D = Π−1
p−1(0) be the fibre over the origin for Πp−1 : Sp−1 → C. There is a

special Lagrangian fibration on Sp−1\D with fibres Tr,λ = {(x, y, z) ∈ Sp−1 : |z| =

r, |x|− |y| = λ} (compare [4, Section 5]) where one could take the holomorphic volume
form as in Lemma 2.8. The matching tori that we considered in this paper corresponds
to monotone fibres Tr,0 in this fibration. There is a unique singular fibre T1,0 with p
nodal singularities. In addition, this special Lagrangian fibration is equivariant under the
action Γp,q on Sp−1 , hence it descends to a special Lagrangian fibration in the quotient
(Sp−1\D)/Γp,q which has only one singular fibre with a unique nodal singularity. This
construction gives an interesting testing ground for Strominger-Yau-Zaslow mirror
symmetry conjecture and the related wall-crossing problem (cf. [4]).

In this paper, we restricted our attention to dimension 4. However, there is a natural
extension of our set-up to dimensions 4k for k > 1. The action Γp,q exists and is
free on the corresponding higher dimensional Ap−1 Milnor fibre. We then obtain a
non-displaceable Lagrangian S1 × S2k−1 in the Ap−1 Milnor fibre and correspondingly,
we get a non-displaceable Lagrangian in the finite quotient.
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