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Abstract

Broken Lefschetz fibrations are a new way to depict smooth 4–manifolds and to
investigate their topology; for instance, Perutz defines invariants of 4–manifolds by
counting J-holomorphic sections of these fibrations. The first part of this thesis is
about the calculus of these objects. In particular, based on earlier results we prove the
existence of broken Lefschetz fibrations on any smooth oriented closed 4–manifold
and describe certain topological manipulations of these objects, to construct new
broken Lefschetz fibration, e.g. with better properties from other ones.

The second part is about Perutz’s invariants for broken Lefschetz fibrations, the cor-
responding invariants for 3–manifolds mapping to S1, and relating these invariants to
Ozsváth-Szabó’s 3 and 4–manifold invariants. Specifically, we prove an isomorphism
between two 3–manifold invariants, namely Perutz’s quilted Floer homology and
Ozsváth-Szabó’s Heegaard Floer homology for certain spinc structures. This yields
interesting and in a sense simplified geometric interpretations of Ozsváth-Szabó in-
variants. In particular, we give new calculations of these invariants and other ap-
plications, e.g. a proof of Floer’s excision theorem in the context of Heegaard Floer
homology.
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Chapter 1

Introduction

Over the past 20 years, low-dimensional topology has seen an explosion of activity

due to its relevance to gauge theory in physics, the study of local symmetries of

quantum fields. Donaldson constructed invariants of smooth four–manifolds in his

pioneering work on Yang-Mills theory. In the subsequent years, several related invari-

ants were constructed, notably Seiberg-Witten invariants, Heegaard Floer invariants

and Hutching’s embedded contact homology proved to be very powerful in answering

many long standing conjectures in low-dimensional topology. Although much is de-

veloped in each of these theories, which are all conjectured to be isomorphic, a deeper

understanding of the interplay between them has only recently become accessible. In

particular, one of the most recent results in this direction is Taubes’s construction of

an isomorphism between Seiberg-Witten-Floer homology and embedded contact ho-

mology. Each theory elucidates different aspects of low dimensional topology, thus an

isomorphism between them allows us to use the power of both theories to prove new

theorems. In this thesis, we study another such Floer theoretic invariant developed
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by Donaldson and Smith for symplectic manifolds and later generalized by Perutz

to the more general spaces where the above theories apply. The crucial difference

of this theory is the emphasis on symplectic techniques. The main protagonists in

this approach are (suitably generalized) Lefschetz fibrations and pseudoholomorphic

curves. The main result of this thesis is an isomorphism between the 3–manifold

invariants associated to this theory and their counterparts in Heegaard Floer theory

for certain spinc structures. This reveals new features of Heegaard Floer theory and

implies strong relations between Heegaard Floer theory and Periodic Floer homol-

ogy, which itself is isomorphic to Seiberg-Witten-Floer homology (this follows from

an extension of the above mentioned theorem of Taubes). As a prologue to this main

result, we have also done more foundational work on broken Lefschetz fibrations and

their Floer theoretic invariants.

In Chapter 2, we study topological aspects of broken Lefschetz fibrations. The main

theorem we prove is that every smooth 4–manifold admits a broken Lefschetz fibra-

tion. We further give a set of moves which allows one to relate two different broken

Lefschetz fibrations on a given 4–manifolds.

In Chapter 3, we study broken fibrations on a 3–manifold and a Floer theoretical

invariant of three-manifolds associated with such a fibration, which we call quilted

Floer homology. The main theorem that we prove is an isomorphism between quilted

Floer homology and Heegaard Floer homology for certain spinc structures.

Furthermore, the proofs of some of the more technically involved results are provided

in Appendix A and B.

8



Chapter 2

Broken Lefschetz fibrations

2.1 Introduction

2.1.1 Near-symplectic manifolds

Let X be a smooth, oriented 4–manifold. Then a closed 2–form ω is called near-

symplectic if ω2 ≥ 0 and there is a metric g such that ω is self-dual harmonic and

transverse to the 0–section of Λ+. Equivalently, without referring to any metric,

one could define a closed 2–form ω to be near-symplectic if for any point x ∈ X

either ω2
x > 0, or ωx = 0, and the intrinsic gradient (∇ω)x : TxX → Λ2T ∗xX has

maximal rank, which is 3. The zero-set Z of such a 2–form is a 1–dimensional

submanifold of X. If X is compact and b+
2 (X) > 0 then Hodge theory gives a near-

symplectic form ω on X. Clearly, in this case Z is just a collection of disjoint circles.

Furthermore, by deforming ω, one can show that on any near-symplectic manifold,

one can reduce the number of circles to 1, this was proved in [30]. We give a new
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proof of this result in Theorem 2.6.1 as an application of the techniques developed

in this chapter. Of course, the last circle cannot be removed unless the underlying

manifold is symplectic.

Interesting topological information aboutX is captured by the natural decomposition

of the normal bundle of these circles, provided by the near-symplectic form. More

precisely, transversality of ω implies that ∇ω : NZ → Λ+X is an isomorphism, where

NZ is the normal bundle to the zero-set of ω. This enables us to orient the zero-set

Z. Now consider the quadratic form NZ → R, v → 〈ι(z)∇vω, v〉, where z is a non-

vanishing oriented vector field on Z. As dw = 0, this quadratic form is symmetric

and has trace zero. It follows that, it has three real eigenvalues everywhere, where

two are positive and one is negative. Then NZ = L+⊕L−, where L± are the positive

and negative eigen-subbundles respectively. In particular, this allows us to divide

the zero-set into two pieces, the even circles where the line bundle L− is orientable,

and the odd circles where L− is not orientable. This definition is motivated by the

following result of Gompf that the number of even circles is equal to 1 − b1 + b+
2

modulo 2 [30] . In particular, observe that if there is only one zero circle which is

even, the manifold X cannot be symplectic.

In this chapter, we will be interested in local deformations of near-symplectic forms

on a 4–manifold. An important such deformation is provided by the Luttinger–

Simpson model given on D4 ⊂ R4 where the birth (or death) of a circle can be

observed explicitly [30]:

ωs = 3ε(x2 + t2 − s)(dt ∧ dx+ dy ∧ dz) + 6εy(tdt ∧ dz + xdx ∧ dz)

− 2z(dx ∧ dy + dt ∧ dz) + 2y(dt ∧ dy + dz ∧ dx)
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for ε ≤ 1
6
.

We will see that this is not the only type of deformation of near-symplectic forms.

One of the goals of this chapter is to identify such deformations and interpret them

in terms of the singular fibrations associated to them.

2.1.2 Wrinkled fibrations

A broken fibration on a closed 4–manifold X is a smooth map to a closed surface

with singular set A t B, where A is a finite set of singularities of Lefschetz type

where around a point in A the fibration is locally modeled in oriented charts by

the complex map (w, z) → w2 + z2, and B is a 1–dimensional submanifold along

which the singularity of the fibration is locally modeled by the real map (t, x, y, z)→

(t, x2 + y2 − z2), B corresponding to t = 0. We remark here that we do not require

the broken fibrations to be embeddings when restricted to their critical point set. In

particular, this means that the critical value set may include double points.

There have been two different approaches to constructions of broken fibrations on

4–manifolds. The first approach is by Auroux, Donaldson and Katzarkov [4] based

on approximately holomorphic techniques, generalizing the construction of Lefschetz

pencils on symplectic manifolds. The more recent approach is due to Gay and Kirby

[10], where the fibration structure is constructed explicitly in two pieces in the form

of open books, and then Eliashberg’s classification of overtwisted contact structures

as well as Giroux’s theorem of stabilization of open books are invoked to glue these

two pieces together to form an achiral broken fibration. Achiral here refers to the

existence of finitely many Lefschetz type singularities with the opposite orientation

on the domain, namely the singularity is modeled by the complex map (w, z) →
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w̄2 + z2.

There is a correspondence between broken fibrations and near-symplectic manifolds

up to blow-up, in analogy with the correspondence between Lefschetz fibrations and

symplectic manifolds up to blow-up. More precisely, given a broken fibration on a

4–manifold X with the property that there is a class h ∈ H2(X) such that h(F ) > 0

for every component F of every fibre, it is possible to find a near-symplectic form on

X such that the regular fibres are symplectic and the zero-set of the near-symplectic

form is the same as the 1–dimensional critical point set of the broken fibration. This

is an adaptation due to Auroux, Donaldson and Katzarkov of Gompf’s generalization

of Thurston’s argument used in finding a symplectic form on a Lefschetz fibration.

Conversely, in [4], it is proven that on every 4–manifold with b+
2 (X) > 0 (recall that

this is equivalent to X being near-symplectic), there exists a broken fibration if we

blow up enough. One of the questions of interest that remains to be answered is to

determine how unique this broken fibration is. In particular, we would like to find a

set of moves on broken fibrations relating two different broken fibrations on a given

4–manifold. One of the main themes of this chapter is the discussion of a set of

moves which allows one to pass from one broken fibration structure to another.

In this chapter, we will consider a slightly more general type of fibration, where we

will allow cuspidal singularities on the critical value set of the fibration. These type of

fibrations occur naturally when one considers deformations of the broken fibrations.

We will also discuss a local modification of a cuspidal singularity (without changing

the diffeomorphism type of the underlying manifold structure) in order to get a

broken fibration. Therefore, one can first deform a broken fibration to obtain a

wrinkled fibration, then apply certain moves to this wrinkled fibration, and finally

modify the wrinkled fibration in a neighborhood of cuspidal singularities to get a

12



genuine broken fibration. In this way, one obtains a set of moves on broken fibrations

on a given 4–manifold.

Let X be a closed 4–manifold, and Σ be a 2–dimensional surface. We say that a

map f : X → Σ has a cusp singularity at a point p ∈ X, if around p, f is locally

modeled in oriented charts by the map (t, x, y, z) → (t, x3 − 3xt + y2 − z2). This is

what is known as the Whitney tuck mapping, the critical point set is a smooth arc,

{x2 = t, y = 0, z = 0}, whereas the critical value set is a cusp, namely it is given

by C = {(t, s) : 4t3 = s2}. This is the generic model for a family of functions {ft},

which are Morse except for finitely many values of t [3]. The signs of the terms y2

and z2 are chosen so that the functions ft have only index 1 or 2 critical points. More

precisely, if f : R3 → R is a Morse function with only index 1 or 2 critical points,

then F : R4 → R2 given by (t, x, y, z) → (t, f(x, y, z)) is a broken fibration with

critical set in correspondence with the critical points of f . Notice that the functions

ft(x, y, z) = x3 − 3xt + y2 − z2 are Morse except at t = 0, where a birth of critical

points occur.

Definition 2.1.1. A wrinkled fibration on a closed 4–manifold X is a smooth map

f to a closed surface which is a broken fibration when restricted to X\C, where C is

a finite set such that around each point in C, f has cusp singularities. We say that

a fibration is purely wrinkled if it has no isolated Lefschetz-type singularities.

It might be more appropriate to call these fibrations “broken fibrations with cusps”,

to avoid confusion with the terminology introduced by Eliashberg-Mishachev [9].

The reason for our choice of terminology is that wrinkled fibrations can typically be

obtained from broken Lefschetz fibrations by applying wrinkling moves (see move

4 in Section 2.3) which eliminates a Lefschetz type singularity and introduces a
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wrinkled fibration structure. Conversely, as mentioned above, it is possible to locally

modify a wrinkled fibration by smoothing out the cusp singularity at the expense of

introducing a Lefschetz type singularity and hence get a broken fibration.

Theorem 2.1.2.

a) Every wrinkled fibration is homotopic to a broken fibration by a homotopy sup-

ported near cusp singularities.

b) Every broken fibration is homotopic to a purely wrinkled fibration by a homotopy

supported near Lefschetz singularities.

The first part of this chapter is concentrated on a set of moves on wrinkled fibra-

tions and corresponding moves on broken fibrations. All of these moves keep the

diffeomorphism type of the total space unchanged. We remark here that as will be

explained below these moves occur as deformations of wrinkled fibrations and not as

deformations of broken fibrations. To be more precise, by a deformation of wrinkled

fibrations we mean a one-parameter family of maps which is a wrinkled fibration for

all but finitely many values of the parameter. In fact, as we will see, an infinitesimal

deformation of a broken fibration gives a wrinkled fibration whereas the wrinkled fi-

brations are stable under infinitesimal deformations. This is indeed the main reason

for extending the definition of the broken fibrations to wrinkled fibrations.

In the second part, using techniques from singularity theory, we prove that our list

of moves is complete in the sense that any generic infinitesimal deformation of a

wrinkled fibration which does not have any Lefschetz type singularity is given by one

of the moves that we exhibited in Section 2.3. Furthermore, as we will see in Section

2.3, it is always possible to deform a wrinkled fibration infinitesimally so that the

Lefschetz type singularities are eliminated.
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Theorem 2.1.3.

a) Any one-parameter family deformation of a purely wrinkled fibration is homo-

topic rel endpoints to one which realizes a sequence of births, merges, flips, their

inverses and isotopies staying within the class of purely wrinkled fibrations.

b) Given two broken fibrations, suppose that after perturbing them to purely wrin-

kled fibrations, the resulting fibrations are deformation equivalent. Then one

can get from one broken fibration to the other one by a sequence of birth, merg-

ing, flipping and wrinkling moves, their inverses and isotopies staying within

the class of broken fibrations.

As in the case of broken fibrations, one can define a wrinkled pencil on X to be a

wrinkled fibration f : X\P → Σ, where P is a finite set and around a point in P , the

fibration is locally modeled in oriented charts by the complex map (w, z) → w/z.

Note that, after blowing up X at the points P , one can get a wrinkled fibration.

It is possible to construct a natural near-symplectic form that is “adapted” to a

given wrinkled pencil. The key property of this form is that it should restrict to

a symplectic form on the smooth fibres of the given wrinkled fibration. Therefore,

we can equip every wrinkled pencil with a well-defined deformation class of near-

symplectic forms, it is natural thus to study what happens to this class after each

move that was described on the previous paragraph. This will be discussed Section

2.5 of this chapter.

In Section 2.6, we give a number of applications of our moves on broken fibrations.

Notably, by considering the mirror image of the wrinkling move, we prove that we

can turn an achiral Lefschetz singularity into a wrinkled map and then into a bro-
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ken fibration, without losing equatoriality of the round handles. This provides the

following simplification of the result of Gay and Kirby in [10]:

Theorem 2.1.4. Let X be an arbitrary closed 4–manifold and let F be a closed

surface in X with F · F = 0. Then there exists a broken Lefschetz fibration from X

to S2 with embedded singular locus, and having F as a fibre. Furthermore, one can

arrange so that the singular set on the base consists of circles parallel to the equator

with the genera of the fibres in increasing order from one pole to the other.

We remark that this disproves the conjecture 1.2 of Gay and Kirby in [10] about

the essentialness of including achiral Lefschetz singularities for broken fibrations on

arbitrary closed 4–manifolds.

After the first writing of this chapter, an earlier result of a similar nature, but allowing

the set of critical values of the fibration to be immersed rather than embedded, has

been obtained by Baykur in [5]. Namely, Baykur proved an existence theorem for

broken fibrations with immersed critical value set by combining the following two

ingredients: (1) a result of Saeki [37] which says that any continuous map from a

closed 4-manifold X → S2 is homotopic to a stable map without definite folds, i.e.

in our terminology, a purely wrinkled fibration with immersed critical value set, (2)

the cusp modification described in Section 2.2 of this chapter.

Another recent development that took place after the writing of this chapter is worth

mentioning here: Akbulut and Karakurt [2] came up with a new proof of the existence

theorem stated above by refining the construction of Gay and Kirby. The difference

between Akbulut and Karakurt’s result and ours is that they directly construct a

broken fibration on any 4-manifold, whereas we describe a way to modify achiral

Lefschetz singularities into broken and Lefschetz singularities.
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Finally, here we would like to discuss our main motivation for studying the particular

structure of broken fibrations and their deformations, the wrinkled fibrations.

2.1.3 Seiberg–Witten invariants and Lagrangian matching

invariants

In [8], Donaldson and Smith define an invariant of a symplectic manifold X by

counting holomorphic sections of a relative Hilbert scheme that is constructed from

a Lefschetz fibration on a blow-up of X. More precisely, by Donaldson’s celebrated

theorem, there exists a Lefschetz fibration f : X ′ → S2, where X ′ is some blow-up of

X. Then, for any natural number r, Donaldson and Smith give a construction of a

relative Hilbert scheme F : Xr(f)→ S2, where the fibre over a regular value p of f is

the symmetric product Σr(f−1(p)). In fact, Xr(f) is a resolution of singularities for

the relative symmetric product, which is the fibration obtained by taking the rth sym-

metric product of each fibre. They then define their standard surface count, which

is some Gromov invariant counting pseudoholomorphic sections of Xr(f). Usher, in

[42], proves that this invariant is the Gromov invariant of the underlying symplectic

4–manifold X. Finally, we know that this is in turn equal to the Seiberg-Witten

invariant of X by the seminal work of Taubes [41]. Therefore, one obtains a geo-

metric formulation of the Seiberg-Witten invariant for a symplectic manifold X on

a Lefschetz fibration structure associated to X, which also shows in particular that

this invariant is independent of the Lefschetz fibration structure.

A similar but technically not so straightforward generalization of this method of

getting an invariant from a Lefschetz fibration is described in [31] for the case of

broken fibrations, thus giving an invariant for all smooth 4–manifolds with b+
2 (X) >

17



0. These are called Lagrangian matching invariants. Here we give a quick sketch of

the definition of these invariants.

Suppose X is a near-symplectic manifold with only one zero circle Z, and f : X → S2

is a broken fibration with one circle of singularity along the equator of S2. Take out

a thin annulus neighborhood of the equator and write N and S for the closed discs

that contain the north pole and the south pole respectively. Let XN = f−1(N)

and XS = f−1(S), suppose the fibre genus of XN is g and the fibre genus of XS is

g − 1. Consider the relative Hilbert schemes HilbrN(XN) and Hilbr−1
S (XS). These

are symplectic manifolds with boundaries Y N
r = Σr

S1(∂XN) and Y S
r−1 = Σr−1

S1 (∂XS),

respectively.

Perutz then constructs a sub-fibre bundle Q of the fibre product Y N
r ×S1 Y S

r → S1

which constitutes the Lagrangian boundary conditions for the pairs of pseudoholo-

morphic sections of HilbrN(XN) and Hilbr−1
S (XS) in the following sense : One defines

LX,f to be a Gromov invariant for pairs (uN , uS) of pseudoholomorphic sections of

HilbrN(XN) and Hilbr−1
S (XS) such that the boundary values (uN |∂N , uS|∂S) lie in

Q.

Now, the big conjecture in this field is of course the conjecture that Lagrangian

matching invariants equal the Seiberg-Witten invariants. This has been verified by

Perutz, [31], in several cases, notably in the case of symplectic manifolds as mentioned

above, and when the underlying manifold is of the form S1 ×M3, for any M which

is a Z–homology–(S1 × S2) and for connected sums.

An important problem to be explored is that the Lagrangian matching invariant is

not yet known to be an invariant of the given 4–manifold. In other words, it is

an invariant of the near-symplectic manifold together with a given broken fibration
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structure. Our next task in this field will be to show that the Lagrangian matching

invariant stays an invariant under the set of moves that we describe in this chapter.

We believe that our set of moves will be enough to pass from a given broken fibration

structure on a manifold to any other broken fibration structure on the same manifold

under suitable hypotheses on the homotopy type of the fibration map. We have strong

evidence for this since, as was mentioned above, the set of moves that we discuss in

this chapter are sufficient to pass from a given broken fibration to any one-parameter

deformation of it. These two hypotheses would imply that the Lagrangian matching

invariant is really an invariant of the underlying manifold. We believe that these steps

will play an important role in proving the big conjecture mentioned above.

2.2 A local modification on wrinkled fibrations

Recall from the introduction that a cusp singularity is given locally by the map

F : R4 → R2 given by:

(t, x, y, z)→ (t, x3 − 3xt+ y2 − z2)

The critical point set is a smooth arc, {x2 = t, y = 0, z = 0}, whereas the critical

value set is a cusp, namely it is given by C = {(t, s) : 4t3 = s2}.

The idea is to modify a neighborhood of the singular point of the cusp with an

allowed model for broken fibrations without changing the topology. We will do this

by surgering out a neighborhood of the cuspidal singularity and gluing back in a

neighborhood of an arc together with a Lefschetz type singular point as shown in

Figure 1. The issue is to make sure that the fibration structures match outside the
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neighborhood.

X

a

b

c

a

b

s

t

Figure 2-1: Local modification

Restricting to a neighborhood of the origin, we get a map F : D4 → D2 and C

divides the image into two regions, where the fibres above the “interior region” are

punctured tori, whereas the fibres above the “exterior region” are discs, as shown

in Figure 1. Furthermore, looking above the line {t = 1
2
}, one sees that as the

parameter s converges to C from below, s→ 1√
2
, one of the generating loops of the

homology of the torus collapses to a point , and as s converges to C from above,

s→ − 1√
2

the other generator collapses to a point. This is evident from the fact that

f1/2(x, y, z) = x3 − 3
2
x + y2 − z2 restricted to the preimage of {t = 1

2
} is a Morse

function on D3 with 2 critical points of indices 1 and 2 which cancel each other.

Now consider the D2–valued broken fibration structure described on the right of

Figure 1. Let us denote this fibration by p : X → D2. This fibration is cooked up so

that it matches above a neighborhood of the boundary of D2 with the fibre structure

of the map F . On the other hand, by introducing a Lefschetz type singularity, we are
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able to have a broken fibration structure, where the vanishing cycles are described

on the right of the Figure 1. In order to perform a local surgery to pass from the

map F to the described broken fibration p, it remains to show that the total space X

is diffeomorphic to D4. This will be accomplished by giving a handle decomposition

of X, and showing that it is in fact obtained by attaching one 1–handle and one

2–handle to D4, in such a way that they can be cancelled.

Let us now describe X explicitly. Denote the standard loops generating homology

of a regular fibre by a and b. As shown in Figure 1, restricting to the line {t = 1
2
},

as s approaches to C from below, a collapses to a point and as s approaches to C

from above, b collapses. (This is to be consistent with the fibre structure of F .)

Now the monodromy around the Lefschetz type singularity must be the Dehn twist

along c = a − b, denoted by τa−b so that τa−b(a) = b, where we oriented a and b

so that a · b = −1. Therefore, restricting to the line s = 0, as t approaches to the

singularity a−b collapses to a point. (Here by c = a−b we really denote an embedded

loop c which is equal to [a − b] as a homology class.) We remark here that, just as

in Lefschetz fibrations, a diagram indicating the fibre structure and vanishing cycles

along relevant paths is enough to determine a broken (or wrinkled) fibration uniquely

on a disc. We now have an explicit understanding of the various vanishing cycles for

X. Next we proceed to describe the corresponding handle diagram. We first restrict

to the preimage of the region shown in Figure 2. This is clearly diffeomorphic to

the total space X. Now divide this region into 3 parts as shown in Figure 2. The

preimage of region 0 is just D2×D2 = D4. We claim that the preimage of regions 0

and 1 together is D4∪ 1–handle, and the preimage of all three regions is D4∪1–handle

∪ 2–handle in such a way that the attaching sphere of the 2–handle intersects the

belt sphere of the 1–handle transversely at a single point, so that these two handles
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can be cancelled.
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Figure 2-2: Handle decomposition of the total space

In this picture, it is more convenient to fix the reference fibre above a point which lies

between regions 1 and 2 as shown in the Figure 2. Just for simplicity, we can choose

an identification of this reference fibre with the previous choice using the parallel

transport along a simple arc above the Lefschetz singularity so that the vanishing

cycles in this new reference fibre are given as shown. Finally, observe that we can

isotope the base so that the 1–dimensional singular set is straightened to a line.

Next, we are in a position to see the handle decomposition very explicitly. In fact,

the preimage of the regions 0 and 1 can be thought as ( D3 ∪ 1–handle ) × D1,

where the D1 is the s direction. The belt circle of this 3–dimensional 1–handle

corresponds to the vanishing cycle a on a regular fibre above the region 1, to be

precise, fix the regular fibre F above a point p in region 1, say p lies on the s = 0

line. Now ( D3 ∪ 1–handle ) × D1 = D4 ∪ 1–handle where the belt sphere of this

latter 4–dimensional 1–handle intersects F at a. Now, by construction starting from

F as one approaches to Lefschetz singularity the loop c collapses to a point. It is a

standard fact of Lefschetz fibrations that gluing the preimage of region 2 corresponds

to a 2–dimensional handle attachment with attaching circle being the loop c on F
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[11]. (In fact, if one considers the local model (z, w) → z2 + w2, then Re(z2 + w2)

is a Morse function with one critical point of index 2 at the origin.) Therefore, we

conclude that X = D4 ∪ 1–handle ∪ 2–handle with belt sphere of the 1–handle

intersects the attaching circle of the 2–handle transversely at exactly one point, and

this intersection point is precisely the intersection of the loop a and the loop c on F .

Finally, applying the cancellation theorem of handle attachments, we conclude that

X = D4 as required.

It is of interest to note that one could as well replace a cusp singularity with a broken

arc singularity and an achiral Lefschetz singularity, where vanishing cycles for the

cusp are given by a and b as before, and the vanishing cycle for the achiral Lefschetz

singularity is given by c = a + b (since one must now have τ−1
c (a) = −b). The

difference between a Lefschetz singularity and an achiral Lefschetz singularity with

the same vanishing cycle is in the framing of the corresponding 2–handle attachment.

Namely, a Lefschetz singularity corresponds to −1–framing with respect to the fibre

framing whereas an achiral Lefschetz singularity corresponds to +1–framing. The

cancellation theorem of handle attachments does not see the framings, therefore the

proof is verbatim.

We remark here that the local modification described in this section is not given as

a deformation, in the sense that we have not explained how to give a one-parameter

family of wrinkled fibrations which starts from the fibration depicted on the left side

of Figure 1 and ends at the fibration given on the right side of Figure 1. We will

actually give such a family in the next section, which will in fact give yet another way

of proving the validity of the above move. However, we chose to present the above

proof first, as it is considerably simpler and in fact this enabled the author to dis-

cover more complicated modifications described in Section 2.3, which come equipped
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with deformations. Afterwards, we were able to recover the above modification as a

composition of these deformations.

2.3 A set of deformations on wrinkled fibrations

In this section, we describe a set of moves on wrinkled fibrations. We first give three

such moves which are deformations of wrinkled fibrations and the corresponding

deformations which end up being broken fibrations are obtained by applying the

modification described in Section 2.2, which as was mentioned there, is indeed a

deformation. Note that this was not proved in the previous section. This will be

accomplished after we describe the last move which enables us to turn a Lefschetz

singularity into three cusp singularities.

Move 1 (Birth) : Consider the wrinkling map Fs : R×R3 → R2, as defined in [9]

:

(t, x, y, z)→ (t, x3 + 3(t2 − s)x+ y2 − z2)

For s < 0, this is a genuine fibre bundle, i.e., there is no singularity. At s = 0, the

only singularity is at the origin. This is a degenerate map, which is not an allowed

singularity for a wrinkled fibration. For s > 0, the critical point set of Fs is the circle

{x2 + t2 = s, y = z = 0}, whereas the critical value set Cs is a wrinkle shown on the

left of Figure 3. This is clearly a wrinkled map. Therefore, we have a deformation

of wrinkled maps, the only subtle change being at s = 0, where birth of the wrinkle

happens.

Now, fix s = 1. Considering the wrinkle as obtained from gluing two cusps together,
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Figure 2-3: Creation of a circle singularity along with two point singularities

we can apply the local modification of Section 2.2 to obtain a broken fibration on R4

with singular set a circle together with two point singularities as shown on the right

of Figure 3. Note that one has to check that the configuration of the vanishing cycles

matches the model in Section 2.2. Conveniently, we can check this on the vertical

line t = 0. Then the map becomes (0, x, y, z)→ (0, x3− 3x+ y2− z2), and this is the

same map that was used in Section 2.2, therefore the configuration of the vanishing

cycles matches the model in Section 2.2. Namely, on t = 0, the two vanishing cycles

obtained from approaching to C from below and from above starting from the origin,

intersect transversely at a point.

Thus, given a broken fibration on any 4–manifold, we can restrict the fibration to a

D2 on the base where the fibration is regular, and also restrict the fibres to obtain

D2 ×D2. Then, apply the move just described to obtain a new fibration, where the

singular set is changed by an addition of a circle and two points. Furthermore, the

fibre genus above the points in the interior of this new singular circle increases by

1.
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We remark that this move on broken fibrations was first observed by Perutz in

proposition 1.4 of [31], where he proves that the total space of the closed fibre case of

the fibration on the right of Figure 3 is diffeomorphic to S2×S2. Here, we were able

to divide this move into two pieces by allowing cusp singularities, which indicates

that the local move of Section 2.2 is a more basic move.

Move 2 (Merging) : Let us now describe another move which corresponds to

merging two singular circles to obtain one circle together with two Lefschetz type

singularities. We begin with the local picture described on the left side of Figure

4. The lines which separate regions on the base indicate the critical value set. The

vanishing cycles obtained from moving towards the upper line and moving towards

the lower line are assumed to intersect transversely at a singular point. The standard

model for such a broken fibration F : R4 → R2 is given by the map (t, x, y, z) →

(t, x3 − 3x + y2 − z2). The critical value set of this map is given by two horizontal

lines, and the configuration of the vanishing cycles is as described. Now consider the

map Fs : R× R3 → R defined by:

(t, x, y, z)→ (t, x3 + 3(s− t2)x+ y2 − z2)

Then for s < 0, Fs is isotopic to F , with the critical value set being C = {(t, u) : 4(t2−

s)3 = u2}. For s < 0, C consists of two simple curves and is isotopic to the left side

of Figure 4. At s = 0, as before, we have a more degenerate map. This is where

a subtle change in the fibration structure occurs. For s > 0, we get a wrinkled

map with critical value set, including two cusp singularities, isotopic to the model

depicted in the middle part of Figure 4. Note that the picture on Figure 4 is drawn
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so that the maps are equal outside of a neighborhood of the origin, to ensure that

when restricted to D4, the maps agree on a neighborhood of the boundary. Finally,

we apply the local modification model from Section 2.2 to each cuspidal singularity

to get a new broken fibration. Therefore, we obtain a move of broken fibrations,

namely whenever one has the configuration described on the left side of Figure 4,

one can surger out a D4 and glue in the right side of Figure 4 to obtain a new

configuration.

a

b

a

b

a

b

a

b

a

b

X X

Figure 2-4: Merging singular circles

We remark here that to apply a merging move, one needs a configuration as in the

left side of Figure 4, in particular it is necessary that the vanishing cycles intersect

transversely at a unique point. On the other hand, to apply an inverse merging move

the following two conditions are necessary. Referring to the right part of Figure 4, one

needs to make sure that, fixing a reference fibre halfway along a path connecting the

Lefschetz singularity and the broken singularity on the left, the vanishing cycles for

the Lefschetz singularity and the broken singularities should intersect transversely at

a point. Exactly the same configuration is required on the right side of the fibration.
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However, we would like to point out that there is no compatibility condition required

for the two sides as long as the fibres in the middle region are connected. Namely,

to give an embedding of the fibration depicted on the right side of Figure 4 into a

fibration that has the same base and whose vanishing cycles satisfy the condition

described above, one divides the base into three pieces: a piece on the left that

includes the Lefschetz singularity and the broken singularity, a middle piece which is

a smooth fibration, and a piece on the right which includes the Lefschetz singularity

and the broken singularity. Since the vanishing cycles are as prescribed above, it is

easy to construct a fibrewise embedding of the total spaces of the pieces on the left

and on the right. Namely, given two simple closed curves intersecting transversely

at one point on a fibre F , it is always possible to find a diffeomorphism of F such

that those two curves are standardized, in the sense that they sit in the standard

way as part of an embedding of a punctured torus to F . Finally in order to give

an embedding of the total space of the middle piece, one needs to give a fibrewise

embedding of the disc fibration D2 × D2 such that, if we consider the base D2 as

[0, 1]2, the embedding is already prescribed above {0, 1} × [0, 1]. But now, it is easy

to extend this to a fibrewise embedding of D2 ×D2 by just flowing the fibers above

{0}× [0, 1] to fibres above {1}× [0, 1] since the set of embeddings of D2 to a fibre F

is clearly connected provided that F is connected.

Move 3 (Flipping) : This move is originally due to Auroux. The observation was

that for a given near-symplectic manifold (X,ω), if one considers possible broken

fibrations adapted to (X,ω), the rotation number of the image of a given component

of the zero-set of ω is not fixed a priori. If one considers a one-parameter family of

deformations of broken fibrations, one can possibly get a flip through a real cusp.
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However, here we discuss this move in an alternative way to the original approach,

using the local modification discussed in Section 2.2. Consider the map Fs : R×R3 →

R2 given by:

(t, x, y, z)→ (t, x4 − x2s+ xt+ y2 − z2)

Then for s < 0, the critical value set consists of a simple curve and Fs is isotopic

to the map described on the left side of Figure 5. At s = 0, we have a higher order

singularity and as before this is where a subtle change in the fibration structure

occurs. For s > 0, we get a wrinkled map with critical value set, including two cusp

singularities, isotopic to the model depicted in the middle part of Figure 5. This map

still induces an immersion on the critical point set away from the cusp singularities,

however now we have a double point as shown in Figure 5.

XX

c

b

a

Figure 2-5: Flipping

One can fix a reference fibre in the interior region (the high-genus region) as in

the middle portion of Figure 5 so that the vanishing cycles for the three paths

drawn are the given loops a, b, c. Indeed, we know from the local model of a cusp

singularity that the vanishing cycles corresponding to each branch of a cusp intersect
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transversely once. Therefore, the vanishing cycle for the path going up intersects both

the vanishing cycle for the lower left path and the vanishing cycle for the lower right

path transversely at a point. Furthermore, we know that the two latter vanishing

cycles are disjoint since the critical point set in the total space is embedded, and

they cannot be homotopic, since otherwise the fibres above the bottom region would

have a sphere component. Now, once these intersection properties are understood, it

is easy to see that there is a diffeomorphism of the twice punctured torus that sends

any configuration of three simple closed curves satisfying the above properties to a,

b and c.

On the right side of Figure 5, it follows from monodromy considerations (recall that

the monodromy around a Lefschetz singularity is the Dehn twist along the vanishing

cycle) as in Section 2.2 that the vanishing cycles for Lefschetz type singularities are

as follows: Going along the line segment that connects the two singularities, as one

approaches the singularity on the left, the cycle a+b vanishes, and as one approaches

the singularity on the right, the cycle c− b vanishes.

Now, we will pass to another kind of deformation which is different in nature from

the ones that are described above. Note that for a general smooth map F : R4 → R2,

the differential dFp : R4 → R2 at a critical point p can have rank either 0 or 1. If

the rank is 1, then around p we can find local coordinates such that F is of the form

(t, x, y, z) → (t, f(t, x, y, z)) by the inverse function theorem. Similarly, any pertur-

bation Fs of F around p can be expressed in the form (t, x, y, z) → (t, fs(t, x, y, z)).

Therefore, the above moves involved the case where the deformation is focused

around a critical point p of F such that dF has rank 1. In the case of a wrin-

kled fibration, these are precisely the points lying in the 1–dimensional part of the

critical point set. In fact, any generic deformation around such a critical point is
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given by one of the above deformations in some coordinate chart. We will elaborate

more on this point in the next section using techniques from singularity theory. Our

next move will be deforming F around a point p such that dFp vanishes. For our

purposes, these correspond to deforming a wrinkled fibration around a Lefschetz type

singularity.

Move 4 (Wrinkling) : Around a Lefschetz type singularity, we have oriented

charts where F : R4 → R2 is given by (t, x, y, z)→ (t2−x2 +y2−z2, 2tx+2yz), or in

complex coordinates u = t+ ix and v = y + iz, F is given by (u, v)→ u2 + v2. Now

the simplest non-trivial deformation of such a map is given by the map Fs : C2 → C

defined by

(u, v)→ u2 + v2 + sReu

or in real coordinates:

(t, x, y, z)→ (t2 − x2 + y2 − z2 + st, 2tx+ 2yz)

The stability of this map follows from a standard result in singularity theory, see

Morin ([24]). Therefore, the family Fs, for s ∈ [0, 1], indeed gives us a family of

wrinkled fibrations. The critical points of Fs are the solutions of x2 + t2 + st
2

= 0, y =

z = 0. This circle can be parametrized by t = − s
4
(1 + cos θ), x = s

4
sin θ, and the

critical value set is given by {(− s2

8
(1 + cos θ)(2 − cos θ),− s2

8
(1 + cos θ) sin θ) : θ ∈

[0, 2π]}. It is easily checked that this equation defines a curve with 3 cusps. F0 is

the standard map around a Lefschetz type singularity, and Fs for s > 0 is a wrinkled

fibration with 3 wrinkles as shown in Figure 6. We will refer to the critical value set

of this map as triple cuspoid.
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Figure 2-6: Wrinkling

The vanishing cycles are a, b and d = b+ c, where a,b and d are depicted on the right

side of Figure 6. The curves a, b and c, which also appear in the middle picture of

Figure 5, are taken to be the standard set of generators for the doubly punctured

torus. As shown in Figure 6, we can in fact arrange so that d passes through the

intersection point of a and b and intersects a and b transversely at that point.

The importance of this configuration is that all three cycles intersect at a point

transversely and there is no path connecting the two boundary components of the

doubly punctured torus that does not intersect these three cycles. More precisely,

given a configuration of 3 simple closed curves on a doubly punctured torus with this

property, there is a diffeomorphism of the doubly punctured torus which brings the

set of curves to the curves a, b and d as in Figure 6 (d is a simple closed curve that

is homologous to b+ c and passes through the intersection point of a and b).

A way to see that the vanishing cycles are as claimed is by considering the fibre

above a point w as a double covering of C branched along 2 or 4 points depending

on whether w lies outside of the triple cuspoid or in the interior region bounded by

the triple cuspoid. Specifically, the fibre above w is given by v2 = w − u2 − sReu,
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and projecting to the u component gives a double cover of C branched along {u ∈

C : u2 + sReu = w}. Let w = w1 + iw2, then in real coordinates one can express the

branch locus as:

t2 − x2 + st = w1

2tx = w2

For the rest of the argument, assume for simplicity that s = 2. Take a regular

value lying in the interior region of the critical values of Fs, such as w = (w1, w2) =

(−1/2, 0). Connect this to the exterior by the arc of points (−k/2, 0), k ∈ [1, 3]. One

can calculate that the branch points are given by either t = 0, and x = ±
√
k/2, or

x = 0, and t = −1±
√

4− 2k/2 . Note that, when k < 2 , we have four branch points

(fibre is double punctured torus) , and when k > 2 we have two (fibre is cylinder).

The change is the first two branch points corresponding to t = 0 more or less stay

the same, whereas the branch points corresponding to x = 0 come together along a

segment and disappear when k > 2.

a b
d

projection to 

u-component

b
a

d

Figure 2-7: The fibre as a double branched cover

To get the other vanishing cycles one has to vary w in other directions. The second
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one can be obtained by w1 = −1/2 and w2 = 2k where k goes from 0 to 1 and

the third one can be obtained by w1 = −1/2 and w2 = 2k where k goes from 0 to

−1. One can then see that depending on k we get 4 branch points if we are in the

interior region of the critical values or we have 2 solutions if we are in the exterior.

Corresponding to each of the two variations as above, there are two points in the

branch locus which come together whereas the other two stay more or less the same.

More precisely, one can verify that corresponding to each direction, the four branch

locus points collapse either along a, b or d as described in Figure 7.

The preimages of these paths by the branched covering map are precisely the van-

ishing cycles which were also denoted by a, b and d on the doubly punctured torus

(Figure 7). Hence one concludes that the three vanishing cycles intersect transversely

at a point. Moreover, it is easy to see by explicit calculation as above that as one

approaches a cuspidal point for the fibration Fs, in the branched covering picture

three of the four branch points come together. For example, if the vanishing cycles a

and b collapse as one approaches a cusp singularity of Fs, then the end points of the

paths a and b come together in the base of the branched cover picture. Reversing our

viewpoint, as one crosses a cusp singularity from the low-genus side to the high-genus

side the topology of the fibres of Fs is modified by a surgery in a neighborhood of a

point in the fibre, which is the preimage of one of the two branch points of the dou-

ble branched covering map. More precisely, the surgery that we mean is removing a

tubular disc neighborhood of a point and gluing back in a punctured torus. We will

use this important observation in the next paragraph.

Deformation of a wrinkled fibration to a broken fibration

Now, we are ready to prove that the local modification of Section 2.2 can be ob-
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tained by a combination of merging, flipping and wrinkling deformations. Therefore,

as promised the local modification given in Section 2.2 is also a deformation of wrin-

kled fibrations. The outcome of this paragraph is the statement that any wrinkled

fibration can be deformed to obtain a genuine broken fibration.

X

Figure 2-8: Local Deformation

Following Figure 8, first we deform the Lefschetz singularity to a triple wrinkle by

applying the wrinkling deformation. Now the key observation here is that we can

arrange so that the vanishing cycles corresponding to the bottom cusp of the triple

cuspoid do not interfere with the vanishing cycle corresponding to the arc we started

with. We will explain this in detail below. Therefore, we can isotope the fibration to

the third picture in Figure 8. Next, we will verify that one can perform a merging

move along the dotted line depicted in the third picture in Figure 8. For this one

just needs to verify that the relevant vanishing cycles are in the correct configuration

so as to match with the starting point of the local model for the merging move. This

will allow us to pass to the fourth picture. Finally, we perform two flipping moves

to get to the final result that we wanted.

Let us now describe the missing pieces of the proof in more detail. First, let’s see why

one can isotope the second fibration to the third fibration in Figure 8. For this, we will

need to identify various vanishing cycles for the second fibration and observe indeed

that the vanishing cycles corresponding to the bottom cusp do not interfere with
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the vanishing cycle corresponding to the arc. For the fibration that we start with,

fix a reference fibre at a point p halfway between the Lefschetz singularity and the

singular arc. Recall that the fibre is a punctured torus, and without loss of generality

we can assume that the vanishing cycle for the Lefschetz singularity is the a curve

and moving towards the arc singularity the b curve vanishes, where a and b are drawn

on the left side of in Figure 9. Now, let’s apply the wrinkling move to the Lefschetz

singularity. Consider a line segment from p to a central point q of the triple wrinkle

passing through a cusp point (drawn as a dotted line on the right side of Figure 9). As

described in the previous section, starting from p if we move along this line segment

the fibre above p undergoes a surgery around a neighborhood of a point on the fibre

and the genus increases by 1. Now since the wrinkling move only affects a tubular

neighborhood of the curve a, after the modification of the Lefschetz singularity by

wrinkling move we can choose a reference fibre that is based at the point q which

looks like the one drawn in the middle of Figure 9. In particular, the part of the fibre

above p outside of the tubular neighborhood of a is canonically identified to the part

of the fibre above q outside the doubly punctured torus that appeared after surgery.

More importantly, this latter surgery occurs around a neighborhood of a point which

can be isotoped (if necessary) to be disjoint from the b curve. Hence one can parallel

transport the b curve from the fibre above p to the fibre above q, since the place

where the surgery occurs is disjoint form the curve b. In particular, the image of

b in the fibre above q is disjoint from the vanishing cycles that correspond to the

cusp singularity, which are two simple closed curves on the doubly punctured torus

which intersect transversely, we denote them by α and β. Therefore, by applying a

diffeomorphism of the doubly punctured torus if necessary the reference fibre above

q can be chosen as shown on the right side of Figure 9. Now, it is clear that one can

isotope the second fibration to the third fibration in Figure 8, since the vanishing
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cycle b is disjoint from α and β.

X

a b b b

a b

α

β

p

q

Figure 2-9: Reference fibres

Next, to pass from the third fibration to the fourth fibration in Figure 8, we use

a merging move. In order to do that, we need to understand the vanishing cycles

above the dotted line segment in the third picture in Figure 8. Choose a reference

fibre above a point in the middle of the dotted line segment. As before, we can

standardize it so that it looks like the right side of Figure 9. Now, as one goes down

the curve b vanishes and as one goes up the vanishing cycle γ has the properties that

it lies in the doubly punctured torus, intersects α and β at their intersection point

and any path connecting the boundary circles of the doubly punctured torus has to

intersect the union of α, β and γ. Therefore, comparing Figure 9 with Figure 6, b

has to intersect γ once. Hence we can perform a merging move.

Finally, we apply two flipping moves to the fourth fibration in Figure 8 to pass to

the fifth fibration. These are also allowed, since the configuration of α, γ, b and the

configuration of β, γ, b match the configuration of a, b, c in Figure 5 of the flipping
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move. This completes the proof of the fact that the fibration on the left of Figure 8

is a deformation of the fibration on the right.

2.4 Generic deformations of wrinkled fibrations

and (1, 1)–stability

In this section, we prove that the set of moves listed in the Section 2.3 are sufficient

to produce any deformation of wrinkled fibrations. More precisely, we prove the

following theorem:

Theorem 2.4.1. Let X be a compact 4–manifold, and let Fs : X → Σ be a defor-

mation of wrinkled fibrations. Then it is possible to deform F0 to F1 by applying to

F0 a sequence of the four moves described in Section 2.3 and isotopies staying within

the class of wrinkled fibrations.

Proof. First, observe that we can get rid of the Lefschetz type singularities of F0

and F1 using the wrinkling move. So we can assume that F0 and F1 have no Lef-

schetz type singularities. Also, since Lefschetz type singularities are unstable under

small deformations, we can assume that the deformation does not create any new

Lefschetz singularity. More precisely, we perturb the deformation by keeping the

end points fixed so that we avoid any creation of critical points where dFs vanishes.

This is possible since purely wrinkled fibrations are stable under small perturbation

whereas the existence of points where dFs vanishes is not generic. Therefore, we

have reduced to the case where Fs is a wrinkled fibration except for finitely many

values of s such that Fs has no Lefschetz singularity for all s. So, we can assume

that around a critical point p of Fs0 for any s0 ∈ [0, 1], we have coordinate charts
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so that for s ∈ [s0 − ε, s0 + ε], Fs : R4 → R2 is given by (t, x, y, z)→ (t, fs(t, x, y, z))

and fs0(0) = dfs0(0) = 0. We will next show that generically fs is given by one of

the 3 models described in Section 2.3 corresponding to the moves birth, merging and

flipping. For this, we will introduce the notion of (1, 1)–stable unfoldings following

Wasserman [43] and give a classification of such maps using the machinery developed

in [43], which in turn is based on the celebrated classification of unfoldings by Thom.

Definition 2.4.2. Let f : R5 → R and g : R5 → R be map germs with f(0) =

g(0) = 0. With f we associate a germ F : R5 → R3, defined by F (s, t, x, y, z) =

(s, t, f(s, t, x, y, z)). Similarly we associate a germ G : R5 → R3 with g, given by

G(s, t, x, y, z) = (s, t, g(s, t, x, y, z)). We say that f and g are (1, 1)–equivalent if

there are germs at 0, Φ ∈ Diff(R5),Λ ∈ Diff(R3) and ψ ∈ Diff(R2), and φ ∈ Diff(R)

fixing the origin such that the following diagram commutes:

R5 F //

Φ
��

R3
p //

Λ
��

R2
q //

ψ
��

R
φ

��
R5 G // R3

p // R2
q // R

where p : R3 → R2 is the projection onto the first factor and q : R2 → R is the

projection onto the first factor.

Note that if a one-parameter family deformation Fs of wrinkled fibrations is repre-

sented by (t, x, y, z) → (t, f(s, t, x, y, z)) in some coordinate charts and g is (1, 1)–

equivalent to f , then we can find coordinate charts such that the deformation is rep-

resented by (t, x, y, z)→ (t, g(s, t, x, y, z)) in these new coordinate charts. Therefore,

in order to complete the proof of theorem 2.4.1, we need a classification theorem of

generic functions up to (1, 1)–equivalence, which we state after making precise what
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generic means.

Definition 2.4.3. Let E(Rn,Rp) = set of germs at 0 of smooth mappings from

Rn → Rp. Let E(s, t, x, y, z) = E(R5,R), E(s, t) = E(R2,R), E(s) = E(R,R) such that

the labels reflect the parameters that we are using.

Let f : R5 → R with f(0) = 0 and let F : R5 → R3 be given by F (s, t, x, y, z) =

(s, t, f(s, t, x, y, z)). We say that f is infinitesimally (1, 1)–stable if

E(s, t, x, y, z) = 〈∂f
∂x
,
∂f

∂y
,
∂f

∂z
〉E(s, t, x, y, z) + 〈∂f

∂t
〉E(s, t) + 〈∂f

∂s
〉E(s) + F ∗E(R3,R).

One may interpret this condition geometrically as saying roughly that the “tangent

space” at f to the (1, 1)–equivalence class of f is maximal, i.e. is equal to the

“tangent space” to the unique maximal ideal in E(R5,R) consisting of the set of

germs f such that f(0) = 0.

We remark here that by Theorem 3.15 in [43] any perturbation of a (1, 1)–stable

germ in weak C∞–topology can be represented by a (1, 1)–stable germ. Therefore,

in this sense, a generic deformation will be (1, 1)–stable.

Theorem 2.4.4. Let f : R5 → R be a (1, 1)–stable germ with f(0) = 0. Then f is
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(1, 1)–equivalent to one of the following functions as germs:

h0(s, t, x, y, z) = ±x2 ± y2 ± z2 Morse singularity

h1(s, t, x, y, z) = x3 + tx± y2 ± z2 Cusp singularity

h2(s, t, x, y, z) = x3 + t2x+ sx± y2 ± z2 Birth move

h3(s, t, x, y, z) = x3 − t2x+ sx± y2 ± z2 Merging move

h4(s, t, x, y, z) = x4 + x2s+ xt± y2 ± z2 Flipping move

The proof of Theorem 2.4.4 is given in the Appendix A. This completes the proof of

Theorem 2.4.1 where the signs in the statement of Theorem 2.4.4 are determined by

imposing the condition that the maps become wrinkled fibrations.

2.5 The corresponding deformations on near-symplectic

manifolds

Theorem 2.5.1. Let X be a compact 4–manifold, and let f : X\P → Σ be a wrinkled

pencil. Let Z denote the 1–dimensional part of the critical value set of f . Suppose that

there exists a cohomology class h ∈ H2(X) such that h(F ) > 0 for every component

F of every fibre of f , then there exist a near-symplectic form ω on X, with zero set

Z and such that ω restricts to a symplectic form on the smooth fibres of the fibration.

Moreover, ω determines a deformation class of near-symplectic forms canonically

associated to f .

Note that if every component of every fibre of f contains a point in P , then the

cohomological assumption holds automatically. We will not give a full proof of this
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theorem as the proof in [4] applies here almost verbatim. The only modification

required is in part 1 of the proof given in [4], where one constructs a near-symplectic

form positive on the fibres which is defined only in a neighborhood of the critical

point set. For the wrinkled fibrations, we introduce a new type of singularity on the

critical value set, namely the cusp singularity. Therefore one needs to say a word

about how to construct a near-symplectic form positive on the fibres for the local

model of the cusp singularity. For that, recall the local model for the cusp singularity.

To wit, we have oriented charts where the wrinkled fibration is given by:

f : (t, x, y, z)→ (t, x3 − 3xt+ y2 − z2)

Now, consider the 2–form ω = dt∧dft+∗(dt∧dft), where ft(x, y, z) = x3−3xt+y2−z2

are Morse except at t = 0. This form is self-dual by construction. Since ft is Morse

except at t = 0, this form is transverse to the 0–section of Λ+. The only missing

property for ω to be near-symplectic is that it be closed. In fact, in this specific

example of ft that we are considering ω is not closed. The reason that we are

considering this specific ω is because it is positive on the fibres by construction.

Therefore, we want to modify ω by adding some terms so that it is closed and at

the same time preserve the property that it is positive on the fibres. In this section,

this will be the general scheme for finding explicit near-symplectic forms on a given

fibration. One such modification is as follows:

ω̃ = dt ∧ dft + ∗(dt ∧ dft)− y(3dt ∧ dz + 6xdz ∧ dx)

However, in order to control the positivity we need to ensure that the extra terms

we added are small when evaluated on a basis of a fibre. Therefore, we multiply that
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term with an ε > 0, and in order to have a closed form we need to also multiply the

dx∧dt+dy∧dz component of dt∧dft+∗(dt∧dft) also by ε. In what follows, we will do

this modification several times, therefore we introduce a scaling map Rε : Ω2
+ → Ω2

+

given by:

Rε(dt ∧ dx+ dy ∧ dz) = ε(dt ∧ dx+ dy ∧ dz)

Rε(dt ∧ dy + dz ∧ dx) = (dt ∧ dy + dz ∧ dx)

Rε(dt ∧ dz + dx ∧ dy) = (dt ∧ dz + dx ∧ dy)

So finally we have our near-symplectic form given by:

ωε = Rε(dt ∧ dft + ∗(dt ∧ dft))− εy(3dt ∧ dz + 6xdz ∧ dx)

= 3ε(x2 − t)(dt ∧ dx+ dy ∧ dz)

+ 2ydt ∧ dy + (2y − 6εxy)dz ∧ dx

− (2z + 3εy)dt ∧ dz − 2zdx ∧ dy

Now, choose ε ≤ 1/6. Then one can check easily that ωε is a near-symplectic form

on D4 and its restriction to smooth fibres of f are symplectic. Thus, we can use ωε

for the local construction in the proof of Theorem 2.5.1.

Theorem 2.5.1 tells us that there is a natural deformation class of near-symplectic

forms on each of the local models of wrinkled fibrations. In what follows, we will

give explicit models of near-symplectic forms for each of the local model of wrinkled

fibrations described in the previous sections. Furthermore, we will provide one-

parameter families for the deformations corresponding to the 4 moves given in Section

2.3. These will be near-symplectic cobordisms in the sense of the following definition
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given by Perutz [30].

Definition 2.5.2. A one-parameter family {ωs}s∈[a,b] of closed 2–forms on X is called

a near-symplectic cobordism if, for all (x, s) ∈ X × [a, b], either (ωs ∧ ωs)(x) > 0 or,

ωs(x) = 0 and (∇ω)(x, s) has rank 3.

The strategy will be the same as the construction of the local model around a cusp

singularity. We first exhibit a 2–form positive on the fibres which is not necessarily

closed. Then we modify it by adding small terms. We will mostly restrict the

domain of the wrinkled fibration to D4 to ensure positivity. Since every deformation

is local and the critical value set lies in D4, this is not different from the previous

considerations.

Deformation 1 (Birth) : The deformation is given by Fs : D4 → R2 :

(t, x, y, z)→ (t, x3 + 3(t2 − s)x+ y2 − z2)

Let fs = x3 + 3(t2 − s) + y2 − z2. Consider the deformation:

ωs = Rε(dt ∧ dfs + ∗(dt ∧ dfs)) + 6εy(tdt ∧ dz + xdx ∧ dz) (2.1)

This form is closed and if we choose ε ≤ 1/6, it is near-symplectic on D4. Fur-

thermore, an easy calculation shows that ωs is symplectic on smooth fibres of Fs.

Now, here we remark that ωs is in fact precisely the Luttinger–Simpson model of

birth of a circle singularity which was defined in the introduction to this chapter.

Therefore, the maps Fs gives a family of wrinkled fibrations adapted to the model of

Luttinger–Simpson of near-symplectic cobordism ωs.
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Deformation 2 (Merging) : The deformation is given by Fs : D4 → R2 :

(t, x, y, z)→ (t, x3 + 3(s− t2)x+ y2 − z2)

Let fs = x3 + 3(s− t2) + y2 − z2. Consider the deformation:

ωs = Rε(dt ∧ dfs + ∗(dt ∧ dfs))− 6εy(tdt ∧ dz + xdz ∧ dx) (2.2)

As before, this form is closed and for ε ≤ 1/6, it is near-symplectic on D4. This is a

variation of the birth model, the zero-set undergoes a surgery by addition of a one

handle. Again, this is a near-symplectic cobordism, and the family Fs is adapted to

ωs, i.e., the restriction of ωs to smooth fibres of Fs is positive.

Deformation 3 (Flipping) : We again follow the same strategy as above. How-

ever, in this case we do not need to restrict to D4. Namely, consider the deformation

for flipping move given by Fs : R× R3 → R2 :

(t, x, y, z)→ (t, x4 − x2s+ xt+ y2 − z2)

Now, let fs = x4 − x2s+ xt+ y2 − z2. Then we calculate:

dt ∧ dfs + ∗(dt ∧ dfs) = (4x3 − 2xs+ t)(dt ∧ dx+ dy ∧ dz)

+ 2y(dt ∧ dy + dz ∧ dx)

− 2z(dt ∧ dz + dx ∧ dy)

This form is positive when restricted to the smooth fibres of Fs by design. How-
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ever, this form is not closed. Therefore, to make it closed we modify it naively as

follows:

ωs = (4x3 − 2xs+ t)(dt ∧ dx+ dy ∧ dz)

+ (2y − 2z)dt ∧ dy + (12x2 − 2s+ 2)ydz ∧ dx (2.3)

− (2z + y)dt ∧ dz − (12x2 − 2s+ 1)2zdx ∧ dy

Now ωs is closed and in fact an easy calculation shows that for s ≤ 1/3, ωs is still

positive when restricted to the smooth fibres of Fs. Furthermore, the zero locus of ωs

is exactly the critical point set of Fs. Therefore, we conclude that ωs in fact belongs

to the canonical class of near-symplectic forms provided by Theorem 2.5.1 for the

fibration Fs. Furthermore, the near-symplectic cobordism ωs for s ∈ [−1, 1/3] is

through near-symplectic forms, that is, for each s ∈ [−1, 1/3], ωs is near-symplectic

and adapted to Fs in the sense of Theorem 2.5.1. Hence, we conclude that the

flipping move does not alter the near-symplectic geometry.

Deformation 4 (Wrinkling) : Recall that the wrinkling move is given by Fs : R4 →

R2 :

(t, x, y, z)→ (t2 + st− x2 + y2 − z2, 2tx+ 2yz)

Let fs = t2 + st− x2 + y2 − z2 and g = 2tx+ 2yz. Then a natural candidate for an

adapted near-symplectic form for Fs is given by dfs ∧ dg + ∗(dfs ∧ dg) However, as
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before,

∗(dfs ∧ dg) = ((2t+ s)2t+ 4x2)dy ∧ dz + (4y2 + 4z2)dt ∧ dx

+ ((2t+ s)2z − 4xy)dz ∧ dx+ (4xy − 4tz)dt ∧ dy

+ ((2t+ s)2y + 4xz)dx ∧ dy − (4xz + 4ty)dt ∧ dz

is not closed. Therefore we modify it to the following form.

σs = ((2t+ s)2t+ 4x2)dy ∧ dz + (4y2 + 4z2)dt ∧ dx

+ 2((2t+ s)2z − 4xy)dz ∧ dx+ 2(4xy − 4tz − sz)dt ∧ dy

It is an easy calculation to check that σs is closed and positive when restricted to

the fibres of Fs. Now, in order to get a near-symplectic form, we restrict to D4, so

Fs : D4 → D2, and to σs we add a large multiple of the pullback of the standard

symplectic form on D2 by Fs. Thus,

ωs = k(dfs ∧ dg) + σs (2.4)

for k large enough is an adapted near-symplectic form, that is, it vanishes exactly at

the critical value set of Fs and restricts positively to smooth fibres of Fs. Observe

that, here also we can see a birth of a zero-circle happens as s goes through negative

values to positive values. Therefore, it is possible that this form is deformation

equivalent through near-symplectic forms to Luttinger–Simpson model.
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2.6 Applications

Merging of zero-sets: Here we reprove the Theorem 1.4 in [30] using moves on

broken fibrations.

Theorem 2.6.1. Given a connected near-symplectic manifold (X,ω0), with ω0 hav-

ing a zero-set with n components, where n ≥ 1, one can find a near-symplectic

cobordism ω[0,1] such that ω1 has k components for any given k ≥ 1. Furthermore,

this near-symplectic cobordism is equipped with an adapted wrinkled pencil.

Our proof will be obtained by applying moves on a broken pencil adapted to the

given near-symplectic manifold. However, one can ignore the base points of the

pencil since all the modifications will take place away from them. In this way, we

obtain a quicker proof as well as our deformation includes a deformation of wrinkled

fibrations associated to it.

Proof. Choose an adapted broken pencil for (X,ω0) which exists by the main con-

struction in [4]. The proof is divided into two parts according to increasing or

decreasing the number of components of the zero-set.

First, let’s show that we can add a new component. Restrict the given pencil to a

smooth D2 fibration over D2, which is isolated from the singularities of the broken

pencil and apply the birth move. Deformation 1 above, tells us that this gives us

a near-symplectic cobordism ω[0,1], where ω1 has one more component in its zero-

set.

Second, let’s show that if n > 1, we can find a near-symplectic cobordism where

the number of components decreases by 1. This part will be longer, since we can’t

directly apply the merging move as the configuration needed for the merging move
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is not always possible to achieve. However, we will apply an alternative combination

of moves to produce a merging of zero-components in the total space. First, choose

two distinct components of the zero-set. Now, connect these components by a path

α : [0, 1]→ X such that the following properties are satisfied.

• α−1(Z) = {0, 1} where Z is the zero set of ω0.

• α′(0), α′(1) ∈ L+, where L+ is the positive eigen-subbundle of NZ as defined

in the introduction.

• α is transversal to the fibres of the broken pencil.

Clearly, such paths are in abundance. Indeed, locally near the end points it’s easy

to build the path using the local models; and everywhere else, being transverse to

the fibres is generic. Restrict the pencil to a neighborhood N = U ∪ V ∪W of α,

where U and W are preimages of a small neighborhood of the image of α(0) and

α(1), and V is a tubular neighborhood α. Then we have a picture as depicted on

the left of Figure 10, where the fibres depicted lie in U and W . The preimage of the

middle region is V , at each fibre this cuts out a disc. Now, we can apply two flipping

moves to both sides, and obtain a fibration as depicted in the middle part of Figure

10.

Notice that these flipping moves do not alter the deformation class of the near-

symplectic form and hence the isotopy class of the zero-set is unchanged after these

moves, only the broken pencil structure has been changed. Finally, given such a

configuration, we can apply an inverse merging move to the fibration (See the remark

at the end of the description of the merging move in Section 2.3). In the total

space this corresponds to merging of the zero-sets and the deformation of the near-

symplectic form is given in the form of a near-symplectic cobordism as in Deformation
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Figure 2-10: Merging of zero-circles along the path α

2, given by the formula 2, except s must be replaced by −s, as we apply an inverse

merging move.

Broken fibrations with connected fibres: Another application of the tech-

niques discussed in this chapter is based on an idea of Baykur and also appears in

[5]. Here we reconstruct that argument for the sake of completeness.

Theorem 2.6.2. Given a connected near-symplectic manifold (X,ω), one can always

find a broken pencil f : X → S2, adapted to ω, the fibres of which are connected.

Therefore, in order to define Perutz’s Lagrangian matching invariant one can always

start with a broken fibration with connected fibres. This indeed simplifies some of

discussions in [31] and allows us to define Lagrangian matching invariant for a slightly

larger number of Spinc structures.

Proof: For simplicity, we start with the case where the zero-set of ω consists of a

single component. Now, observe that, by perturbing ω away from its zero-set, and

using the main result in [4], we can ensure that there exists an adapted broken pencil

for the perturbed near-symplectic form. Since the perturbation can be taken to be
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arbitrarily small, the latter broken pencil will be adapted to ω as well. Without loss

of generality we can assume that there are no base points, otherwise we blow-up first,

apply the argument below and blow-down in the end.

Either the fibres are connected or suppose the fibres above the northern hemisphere

have genera g, and the fibres above the southern hemisphere have genera g1, g2 such

that g1 +g2 = g. Since X is connected, this is the only possibility as the fibres above

the “high-genus side” have to be connected. Furthermore, we can assume that there

are no Lefschetz-type singularities in the “low-genus side” since they can be isotoped

to the “high-genus side”. This is simply because starting from a regular fibre in the

southern hemisphere adjoining a Lefschetz singularity means adding a 2–handle, and

adjoining a broken singularity means adding a 1–handle. But the order of adding

these handles can be reversed by an isotopy, therefore one can first add the 1–handle

corresponding to the broken singularity, then add the 2–handles corresponding to the

Lefschetz-type singularities. Therefore, we can assume that the fibration is trivial

above the southern hemisphere. So, the preimage of a neighborhood of the southern

hemisphere is given as in Figure 11.

g1 g2+

g+1 gg

g1 g2+ g+1

g

X X X X X X X X

Figure 2-11: Making the fibres connected

Now, we apply two flipping moves to pass to the middle picture in Figure 11. Finally,

to obtain the final fibration depicted on the right, we perform an isotopy interchang-

ing the two “legs” of the flips in the middle. This is allowed, since if we consider an

arc cutting these “legs” transversely as shown in the middle picture in Figure 11 as a
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dotted line, the topology of the fibre changes by first vanishing of a separating cycle

(that is, a 2–handle attachment) and then attaching a 1–handle. Again, the order of

attachment does not matter, hence by an isotopy one can obtain a broken fibration

where the fibres are connected.

When the zero locus of ω consists of more than one circle, these various circles live in

disjoint parts of the fibers above the equator of S2. We can again push the Lefschetz

fibers to the high genus side (northern hemisphere) and ensure that the fibration

is trivial above the southern hemisphere. Since the modification explained above is

local in the fibre (it only affects a neighborhood of the vanishing cycle for the broken

singularity), it can be performed simultaneously on each of the circles. Pictorially

this again amounts to the transition shown in Figure 11, but with several circles

“stacked” on top of each other in disjoint parts of the fiber.

Removing achiral Lefschetz singularities: In this paragraph, we prove that any

achiral Lefschetz singularity can be replaced with a circle of broken singularities and

three Lefschetz singularities. Recall that an achiral Lefschetz singularity is modeled

in orientation preserving charts by the complex map (w, z)→ w̄2 + z2.

Now, given an achiral Lefschetz singularity we can consider the same deformation

that was used in the wrinkling move in Section 2.3. Namely, let Fs : C2 → C given

by:

(w, z)→ w̄2 + z2 + sRew

The map Fs is identical to that considered in Section 2.3 up to the orientation-

reversing diffeomorphism (w, z) → (w̄, z). Thus its critical values and vanishing

cycles are the same as in Section 2.3 up to a reversal of the orientation of the fi-
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bre. Namely, when s > 0, we observe a birth of a circle of singularities and we

get a wrinkled fibration with 3 cusps as on the right side of Figure 6 (except the

configuration of the vanishing cycles is reversed). Next, apply the local modification

discussed in Section 2.2 to replace each of the three cusps in the base by a smooth

arc and a Lefschetz singularity. Thus, we have replaced a neighborhood of an achiral

singularity with a genuine broken fibration with a new circle of broken singularities

together with three Lefschetz singularities.

We remark that the new singular circle obtained here is an even circle, whereas

the new singular circle obtained in the original wrinkling move is an odd circle.

(The notions of even and odd circles were defined in the introduction.) The fact

that the original wrinkling move yields an odd circle follows from the fact that

on a near-symplectic manifold the number of even circles is equal to 1 − b1 + b+
2

modulo 2, as was mentioned in the introduction. A more direct way to see this

is as follows: After modifying the cusps as in Section 2.2, we obtain a singular

circle of broken singularities and three Lefschetz singularities. Take a small disc

including the three Lefschetz singularities but not intersecting the singular circle.

Fix a reference fibre above a point on the boundary of this disc such that the curve a

vanishes as one approaches the broken singularity. In Figure 7, after modifying the

cusps, the reference fibre we are fixing is on the lower left side of the picture. The

monodromy around the boundary of this disc is given by the composition of three

right handed Dehn twists corresponding to the Lefschetz singularities. Again, from

Figure 7 and the calculation of vanishing cycles in Section 2.2, one can conclude that

this monodromy is given by µ = τa+d ◦ τb−d ◦ τa−b. From this, we see that µ(a) = −a,

which shows that the circle is an odd circle. Now, in the above perturbation for

the achiral Lefschetz singularity case, all the configuration is the same except, the
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base picture in Figure 7 is reflected so that the counter-clockwise ordering of a, b, d

is changed to a, d, b. Then, one calculates the monodromy to be

µ = τa+b ◦ τb+d ◦ τa−d

which gives µ(a) = a. Hence the singular circle obtained is an even circle.

Corollary 2.6.3. Let X be an arbitrary closed 4–manifold and let F be a closed

surface in X with F · F = 0. Then there exists a broken Lefschetz fibration from X

to S2 with embedded singular locus, and having F as a fibre. Furthermore, one can

arrange so that the singular set on the base consists of circles parallel to the equator

with the genera of the fibres in increasing order from one pole to the other.

Proof. The existence follows from Gay and Kirby’s theorem [10], and the above

modification of achiral Lefschetz singularities. Let’s prove that this can be done in

a certain way so that the singular set on the base consists of circles parallel to the

equator. First, note that Gay and Kirby’s proof places the round singularities on the

tropics of Cancer and Capricorn and the “highest-genus region” is the annular region

between the tropics. Now move any Lefschetz or achiral Lefschetz singularities in the

southern hemisphere towards the equatorial region (moving across circles towards the

higher genus region as in Theorem 2.6.2). Then in the southern hemisphere we are

left with only a bunch of parallel circles on the tropic of Capricorn; the corresponding

round 1-handles all get attached along disjoint braids (i.e. the circle attachments can

be stacked on top of each other or commuted). This is what we need to be able to

apply the move on Figure 11 (i.e., on all the circles simultaneously, placing them on

top of each other and in different parts of the fibers: first two flipping moves, then

an isotopy exactly as in the argument in Theorem 2.6.2. Consequently, we still have

circles on the tropic of Capricorn, but oriented in the opposite way (genus increases
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towards south pole), and some Lefschetz fibers near the south pole (created by the

flips in Figure 11) and the previously given Lefschetz and anti-Lefschetz fibers near

the equator. The latter can now be moved towards the north pole by crossing the

circles at tropic of Capricorn. Therefore, we can assume that the singular circles are

equatorial with all the circles oriented the same way and the “highest-genus region”

is over the south pole. Now, we transform one of the achiral singularities to a circle

singularity and three Lefschetz singularities. Next, push all the remaining Lefschetz

singularities and the achiral singularities (left between the previous circles and the

new circle) across the new circle (into the even higher genus region), so the circle is

now in equatorial position (parallel to the previous circles). Finally, we repeat this

process until there are no more achiral Lefschetz singularities left.

2.7 A summary of moves and further questions

The table below summarizes our set of moves. Only the base parts of the fibrations

are drawn. Each move is drawn in pairs, as a move on wrinkled fibrations and as

a move on the corresponding broken fibrations obtained by replacing each wrinkle

by an arc together with a Lefschetz type singularity as was discussed in Section 2.2.

Also the references to the formulas concerning the changes in the naturally associated

near-symplectic forms provided by Theorem 2.5.1 are given.

The next important task that we would like to address in the future is to prove that

the Lagrangian matching invariant that was described in the introduction is invariant

under the set of moves described in this chapter. Of equal importance is the problem

of determining the set of equivalence classes of deformations of broken fibrations on

a given 4–manifold. The author believes that homotopic broken fibrations should be
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XXBirth

Merging

Flipping

Wrinkling

Wrinkled 
Fibration

Broken
Fibration

Near-Symplectic
Form

Luttinger-Simpson 
birth model. 
See eq (1) of Section 5.

Merging model. 
See eq (2) of Section 5.

No change in the deformation 
class of near-symplectic form. 
See eq (3) of Section 5.

Another birth model. 
See eq (4) of Section 5.

X X

Figure 2-12: Table of Moves

deformation equivalent. That is, we would like to prove that some sort of h–principle

holds for wrinkled fibrations. The main difficulty here is that wrinkled fibrations are

constrained to have indefinite Hessian along the critical points.
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Chapter 3

Heegaard Floer homology of

broken fibrations over the circle

3.1 Introduction

The results that we present in this chapter are formulated in the language of Hee-

gaard Floer homology and interesting by themselves from this perspective. However,

the main motivation of our study comes from a different setting, namely that of

Lagrangian matching invariants developed by Perutz [31], which are conjecturally

isomorphic to Heegaard Floer theoretical invariants. In this chapter, we prove an

isomorphism between the 3–manifold invariants of these theories for certain spinc

structures, namely quilted Floer homology and Heegaard Floer homology. We also

outline how the techniques here can be generalized to obtain an identification of

4–manifold invariants and leave the details to a sequel article.

Before giving a review of both of the above mentioned theories, we give the definition
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of a broken fibration over S1, which will be an important part of the topological

setting that we will be working with.

Definition 3.1.1. A map f : Y → S1 from a closed oriented smooth 3–manifold Y

to S1 is called a broken fibration if f is a circle-valued Morse function with all of the

critical points having index 1 or 2.

The terminology is inspired from the terminology of broken Lefschetz fibrations on

4–manifolds which were discussed in Chapter 2. We remark that a 3–manifold admits

a broken fibration if and only if b1(Y ) > 0, and if it admits one, it admits a broken

fibration with connected fibres.

We will mostly restrict ourselves to broken fibrations with connected fibres and we

will denote by Σmax and Σmin two fibres with maximal and minimal genus. We denote

by S(Y |Σmin), the spinc structures s on Y such that 〈c1(s), [Σmin]〉 = χ(Σmin) (those

spinc structures which satisfy the adjunction equality with respect to the fibre with

minimal genus).

Definition 3.1.2. The universal Novikov ring Λ over Z is the ring of formal power

series Λ = Σr∈Rart
r with ar ∈ Z such that #{r|ar 6= 0, r < N} <∞ for any N ∈ R.

The main theorem of this chapter is an isomorphism, for all spinc structures in

S(Y |Σmin), between the quilted Floer homology of a broken fibration f : Y → S1

(with coefficients in the universal Novikov ring) and the Heegaard-Floer homology

of Y perturbed by a closed 2-form η that pairs positively with the fibers of f :

Theorem 3.1.3. QFH′(Y, f, s; Λ) ' HF±(Y, η, s) for s ∈ S(Y |Σmin).

When g(Σmin) is at least 2 the theorem holds for integral coefficients.
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Corollary 3.1.4. Suppose that g(Σmin) > 1, then for s ∈ S(Y |Σmin) we have

QFH ′(Y, f, s; Z) ' HF+(Y, s)

In Section 3.2, we construct a Heegaard diagram associated with a broken fibration

and investigate the properties of this diagram. We also give a calculation of perturbed

Heegaard Floer homology of fibred 3–manifolds for s ∈ S(Y |F ). In Section 3.3,

we give a definition of quilted Floer homology in the language of Heegaard Floer

theory and prove that it is isomorphic to the Heegaard Floer homology for the spinc

structures under consideration. In Section 3.4, we relate the group defined in Section

3.3 to the original definition of quilted Floer homology in terms of holomorphic

quilts. Here we also prove Floer’s excision theorem and discuss the extension of this

isomorphism to four-manifold invariants.

We now proceed to review the theories and the notation that are involved in our

theorem.

3.1.1 (Perturbed) Heegaard Floer homology

In this section, we review the construction of Heegaard Floer homology, introduced

by Ozsváth and Szabó [26]. The usual construction involves certain admissibility

conditions, however there is a variant of Heegaard Floer homology where Novikov

rings and perturbations by closed 2-forms are introduced in order to make the Hee-

gaard Floer homology group well-defined without any admissibility condition. Our

account will be brief since this theory has been well developed in the literature. The

reader is encouraged to turn to [13] for a more detailed account of perturbed Hee-
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gaard Floer theory. Furthermore, we will mostly find it convenient to work in the

set up of Lipshitz’s cylindrical reformulation of Heegaard Floer homology [18].

Let (Σg,α,β, z) be a pointed Heegaard diagram of a 3–manifold Y . This gives rise

to a pair of Lagrangian tori Tα, Tβ in Symg(Σg), together with a holomorphic hyper-

surface Z = z × Symg−1(Σg). The Heegaard-Floer homology of Y is the Lagrangian

Floer homology of these tori, where one uses the orbifold symplectic form pushed

down from Σ×gg , though one can also use honest symplectic forms (see [34]). The

differential is twisted by keeping track of the intersection number nz of holomorphic

disks contributing to the differential with Z. More precisely, the Heegaard-Floer

chain complex CF+(Y ) is freely generated over Z by [x, i] where x is an intersection

point of Tα and Tβ and i ∈ Z≥0, and the differential is given by

∂+([x, i]) =
∑
y

∑
ϕ∈π2(x,y),nz(ϕ)≤i

#M̂(ϕ)[y, i− nz(ϕ)]

The above definition only makes sense under certain admissibility conditions so that

the sum on the right hand side of the differential is finite. In general, one can

consider a twisted version of the above chain complex by a closed 2-form in Ω2(Y ).

This is called the perturbed Heegaard-Floer homology. The chain complex CF+(Y, η)

is freely generated over Λ (see Definition 3.1.2) by [x, i] where x is an intersection

point and i is a nonnegative integer as before, and the differential is twisted by the

area
∫

[ϕ]
η of the holomorphic disks that contribute to the differential. More precisely,

the differential of the perturbed theory is given by

∂+([x, i]) =
∑
y

∑
ϕ∈π2(x,y),nz(ϕ)≤i

#M̂(ϕ)tη(ϕ)[y, i− nz(ϕ)]
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Note that if ϕ1, ϕ2 are two holomorphic discs that connect an intersection point x

to y, then their difference is a periodic domain P and we have the equality η(ϕ1)−

η(ϕ2) = η([P ]), where the latter only depends on the cohomology class of η. We

remark that although the differential depends on the choice of a representative of

the class [η], the isomorphism class of the homology groups is determined by Ker(η)∩

H2(Y ; Z).

Recall that a 2–form is said to be generic when Ker(η) ∩ H2(Y ; Z) = {0}. For

a generic form coming form an area form on the Heegaard surface, HF+(Y, η) is

defined without any admissibility conditions on the Heegaard diagram.

3.1.2 Quilted Floer homology of a 3–manifold

In this section, we review the definition of quilted Floer homology of a 3-manifold

Y equipped with a broken fibration f : Y → S1. The general theory of holomorphic

quilts is under systematic development by Wehrheim and Woodward [44], though

the case we consider also appears in the work of Perutz [33]. The relevant part of

the theory in the setting of 3-manifolds is obtained from Perutz’s construction of

Lagrangian matching conditions associated with critical values of broken fibrations,

which we now review from [31].

Given a Riemann surface (Σ, j) and an embedded circle L ⊂ Σ, denote by ΣL the sur-

face obtained from Σ by surgery along L, i.e., by removing a tubular neighborhood of

L and gluing in a pair of discs. To such data, Perutz associates a distinguished Hamil-

tonian isotopy-class of Lagrangian correspondences VL ⊂ Symn(Σ) × Symn−1(ΣL)

(where the symmetric products are equipped with Kähler forms in suitable cohomol-

ogy classes, see [31]). These are described in terms of a symplectic degeneration of
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Symn(Σ). More precisely, one considers an elementary Lefschetz fibration over D2

with regular fibre Σ and a unique vanishing cycle L which collapses at the origin.

Then one passes to the relative Hilbert scheme, HilbnD2(Σ), of this fibration (the reso-

lution of the singular variety obtained by taking fibre-wise symmetric products). The

regular fibres of the induced map from HilbnD2(Σ) are identified with Symn(Σ), and

the fibre above the origin has a codimension 2 singular locus which can be identified

with Symn−1(ΣL). VL then arises as the vanishing cycle of this fibration.

Given a 3–manifold Y and a broken fibration f : Y → S1, the quilted Floer homology

of Y , QFH(Y, f), is a Lagrangian intersection theory graded by spinc structures on

Y . Let p1, p2, . . . , pk be the set of critical values of f . Pick points p±i in a small neigh-

borhood of each pi so that the fibre genus increases from p−i to p+
i . For s ∈ spinc(Y ),

let ν : S1\crit(f) → Z≥0 be the locally constant function defined by 〈c1(s), [Fs]〉 =

2ν(s) + χ(Fs), where Fs = f−1(s). Then the construction in the previous para-

graph gives Lagrangian correspondences Lpi ⊂ Symν(p+i )(Fp+i )× Symν(p−i )(Fp−i ). The

quilted Floer homology of Y , QFH(Lp1 , . . . , Lpk), is then generated by horizontal

(with respect to the gradient flow of f) multi-sections of f which match along the

Lagrangians Lp1 , . . . , Lpk at the critical values of f , and the differential counts rigid

holomorphic “quilted cylinders” connecting the generators, [33], [44].

There are various technical difficulties involved in the definition of QFH(Y, f, s) due

to bubbling of holomorphic curves. These are addressed by different means depending

on the value of 〈c1(s), [Σmax]〉. The easiest case is the monotone case, that is when

〈c1(s), [Σmax]〉 > 0, where holomorphic bubbles are a priori excluded. However, for

s ∈ S(Y |Σmin) we will almost never be in the monotone case. In the strongly negative

case, that is when 〈c1(s), [Σmax]〉 ≤ χ(Σmax)/2, one can still eliminate bubbles a

priori by standard means. For the rest of the cases, bubbles might and will occur in
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general, therefore complications arise. The main idea is then to establish a proper

combinatorial rule for handling bubbled configurations. One could also try to use the

more technical machinery of [20] or [7] in order to tackle this case. Another related

issue is showing that quilted Floer homology is an invariant of a three manifold. The

isomorphism constructed in this chapter shows this in an indirect way for the spinc

structures under consideration. We will return to this question and various well-

definedness questions in [17]. For now we will give an alternative description which

we will denote by QFH ′(Y, f, s) that suits our purposes and avoids these technical

issues, hence is well-defined in all cases; see Section 3.3.1 for the definition, and

Section 3.4 and [17] for the equivalence between the two constructions.

In this chapter, we will deal with the spinc structures s ∈ S(Y |Σmin). In this case,

when defined, quilted Floer homology can be interpreted as a variant of the construc-

tion of Heegaard Floer homology, because of Theorem 3.4.1 (in Section 3.4) and a

version of the main theorem in the work of Wehrheim and Woodward [44]. From now

on, we will work with the definition formulated in terms of Heegaard Floer theory

as given in Section 3.3.1.

Finally, we remark that in the case when f : Y → S1 is a fibration, QFH(Y, f) is

given as a fixed point Floer homology theory on the moduli space of vortices and was

first introduced by Salamon in [36]. In this case, the spinc structures s ∈ S(Y |Σ)

corresponds to taking the zeroth symmetric product of the fibres. In this case, it

is natural to set QFH(Y, f) = Λ if s is the canonical tangent spinc structure, and

QFH(Y, f) = 0 for other s ∈ S(Y |Σ).
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3.2 Heegaard diagram for a circle-valued broken

fibrations on Y

3.2.1 A standard Heegaard diagram

We start with a 3–manifold Y with b1 > 0. Then Y admits a broken fibration over S1.

Consider such a Morse function f : Y → S1 with the following additional properties

:

• F−1 = Σmax has the maximal genus gmax = g and F1 = Σmin has the minimal

genus gmin = k among fibres of f .

• The fibres are connected.

• The genera of the fibres are in decreasing order as one travels clockwise and

counter-clockwise from −1 to 1.

A broken fibration with these properties always exists provided b1 > 0. In fact, any

broken fibration with connected fibers can be deformed into one with these properties

by an isotopy that changes the order of the critical values.

We will now construct a Heegaard diagram for Y adapted to f . Roughly speaking,

the Heegaard surface Σ will be obtained by connecting Σmax and Σmin by two “tubes”

traveling clockwise and counter-clockwise from Σmax to Σmin. More precisely, start

with a section γ of f over S1. Then we can pick a metric for which γ is a gradient

flow of f , and since γ is disjoint from the critical points of f , it also avoids the

stable/unstable manifolds of the critical points. Now pick two distinct points p and

q on Σmax, connect p to Σmin by the gradient flow line above the northern semi-circle

in the base S1 which connects −1 to 1 in the clockwise direction and connect q to
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Σmin by the gradient flow line above the southern semi-circle, avoiding the critical

points of f in both cases. Denote these flow lines by γp and γq and their end points

in Σmin by p̄ and q̄. Then the Heegaard surface that we are interested in is obtained

by removing discs around p, q, p̄ and q̄ and connecting Σmax to Σmin along γp and γq

(see Figure 3-1). We denote the resulting surface by

Σ = Σmax ∪∂N(γp)∪∂N(γq) Σmin

where N(γp) and N(γq) stands for normal neighborhoods of γp and γq.

(g − k) index 2

(g − k) index 1

Σg Σk

Figure 3-1: Heegaard surface for a broken fibration

Note that g(Σ) = g+ k+ 1. Denote the point where γ intersects Σmax by w and the

point where γ intresects Σmin by z. Next, we will describe α and β curves on Σ in

order to get a Heegaard decomposition of Y . First, set α0 to be ∂N(γp) ∩ f−1(−i)

and set β0 to be ∂N(γp) ∩ f−1(i). The preimage of the northern semi-circle is a

cobordism from Σmax to Σmin which can be realized by attaching (g − k) 2-handles

to Σmax × I, and hence can be described by the data of g − k disjoint attaching

circles on Σmax. These we declare to be α1, . . . , αg−k. Similarly the preimage of the
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southern semi-circle is a cobordism from Σmax to Σmin, encoded by g − k disjoint

attaching circles β1, . . . , βg−k on Σmax. Alternatively, these two sets correspond to

the stable and unstable manifolds of the critical points of f . More precisely, orienting

the base S1 in the clockwise direction, α1, . . . , αg−k are the intersections of the stable

manifolds of the critical points above the northern semi-circle with Σmax, similarly

β1, . . . , βg−k are the intersections of the unstable manifolds of the critical points above

the southern semi-circle with Σmax. Note that by choosing p and q sufficiently close

to w we can ensure that they lie in the same connected component in the complement

of α1, . . . , αg−k and β1, . . . , βg−k.

Next, we describe the remaining curves, (αg−k+1, . . . , αg+k, βg−k+1, . . . , βg+k). Let F

be the part of Σ which consists of Σmax (except the two discs removed around p and

q) together with halves of the connecting tubes up to α0 and β0. Thus F is a genus g

surface with 2 boundary components α0 and β0. Also, denote by F̄ the complement

of Int(F ) in Σ. Thus F̄ is a genus k surface with boundary consisting of α0 and

β0 and Σ = F ∪α0∪β0 F̄ . Let us also pick p+ and q+ on the boundary of the disks

deleted around p and q, and p̄+ and q̄+ their images under the gradient flow (so that

they lie on the boundary of the discs deleted around p̄ and q̄). Now we can find two

2k-tuples of “standard” pairwise disjoint arcs in F̄ , (ξ̄1, . . . , ξ̄2k), (η̄1, . . . , η̄2k) such

that ξ̄i intersect η̄j only if i = j, in which case the intersection is transverse at one

point. Furthermore, we can arrange that the points z, p̄+ and q̄+ lie in the same

connected component in the complement of these arcs in F̄ . A nice visualization

of these curves on F̄ can be obtained by considering a representation of F̄ by a

4k-sided polygon. First, represent a genus k surface by gluing the sides of 4k-gon

in the way prescribed by the labeling a1b1a
−1
1 b−1

1 . . . akbka
−1
k b−1

k of the sides starting

from a vertex and labeling in the clockwise direction. Now remove a neighborhood

66



of each vertex of the polygon and a neighborhood of a point in its interior. This

now represents a genus k surface with two boundary components. Let us put β0

at the boundary of the interior puncture and α0 at the boundary near the vertices

then the curves (ξ̄2i−1, ξ̄2i) coincide with the portions of the edges labelled (ai, bi) left

after removing a neighborhood of each vertex and the curves (η̄2i−1, η̄2i) connect the

midpoints of (ξ̄2i−1, ξ̄2i) radially to β0, see Figure 3-2.

ξ̄2i−1

ξ̄2i−1

ξ̄2i

ξ̄2i

η̄2i−1

η̄2i−1

η̄2i

η̄2i

α0

α0

α0 β0

Figure 3-2: The curves (ξ̄2i−1, ξ̄2i), (η̄2i−1, η̄2i)

Now, using the gradient flow of f we can flow the arcs (ξ̄1, . . . , ξ̄2k) above the north-

ern semi-circle to obtain disjoint arcs (ξ1, . . . , ξ2k) in F which do not intersect with

α1, . . . , αg−k. (Generic choices ensure that the gradient flow does not hit any crit-

ical points.) The flow sweeps out discs in Y which bound (αg−k+1, . . . , αg+k) =

(ξ1 ∪ ξ̄1, . . . , ξ2k ∪ ξ̄2k). Similarly, we define (βg−k+1, . . . , βg+k) by flowing the arcs

(η̄1, . . . , η̄2k) above the southern semi-circle. To complete the Heegaard decomposi-

tion of (Y, f) we set the base point to be z which lies in the same region as p̄+ and q̄+

on F̄ . Therefore, we constructed a Heegaard decomposition of (Y, f). We will make

use of a filtration associated with another base point w which we can ensure to be

located in the same region as p+ and q+, this is also the region where the image of z
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lands under the gradient flow above the northern and southern semi-circles. Roughly

speaking, this point will be used to keep track of the domains passing through the

connecting “tubes”.

Note that the Heegaard diagram constructed above might be highly inadmissible. An

obvious periodic domain with nonnegative coefficients is given by F , which represents

the fibre class. However, the standard winding techniques will give us a Heegaard

diagram where F (or its multiples) is the only potential periodic domain which might

prevent our Heegaard diagram from being admissible (which happens if and only if

k = 1). In fact, we can achieve this by only changing the diagram in the interior of F ,

so that the standard configuration of curves on Σmin is preserved. Furthermore, we

will make sure that, in the new Heegaard diagram, the points p+ and q+ remain in the

same connected component. To get started, fix an arc δ in F , disjoint from all the α

and β curves in Int(F ), that connects the two boundary components of F and passes

through p+ and q+. We claim that there are g+k simple closed curves {γ1, . . . , γg+k}

in F such that γi do not intersect δ and the algebraic intersection of γi with αj is

1 if i = j and 0 otherwise (Note that we do not require the curves γ1, . . . , γg+k to

be disjoint). For that, we will show that the curves α1, . . . , αg−k, ξ1, . . . , ξ2k, δ are

linearly independent in H1(F, ∂F ). Then the Poincaré-Lefschetz duality implies the

existence of the desired simple closed curves in F which do not intersect δ.

Lemma 3.2.1. The curves α1, . . . , αg−k, ξ1, . . . , ξ2k, δ are linearly independent in

H1(F, ∂F ).

Proof. It suffices to show that the complement of α1, . . . , αg−k, ξ1, . . . , ξ2k, δ in F is

connected. Take any two points a, b in the complement. Now use the gradient flow

along the northern semi-circle to obtain ā and b̄. Also let δ̄ be the image of δ under

the flow. Connect ā and b̄ in the complement of ξ̄1, . . . , ξ̄2k in F̄ with a path that is
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disjoint from δ̄ (This is easy because of the standard configuration of curves in F̄ ).

Now flow the connecting path back to obtain a path that connects a and b in the

complement of α1, . . . , αg−k, ξ1, . . . , ξ2k.

Lemma 3.2.2. Given a basis of the abelian group of periodic domains in the form

F, P1, . . . , Pn, after winding the α curves sufficiently many times along the curves

{γ1, . . . , γg+k}, we can arrange that any periodic domain in the linear span of Pi

has both positive and negative regions on the Heegaard surface. Furthermore, for

s ∈ S(Y |Σmin), the resulting diagram is weakly admissible if k > 1.

Proof. This follows by winding successively along the curves {γ1, . . . , γg+k} in F ,

first wind along γ1 all the α curves that intersect γ1, then wind the resulting curves

around γ2, etc. In this way the α curves stay disjoint (each winding is actually a

diffeomorphism of F supported near γi, and maps disjoint curves/arcs to disjoint

curves/arcs). Furthermore, because winding along γi is a diffeomorphism of F iso-

topic to identity, it preserves the property that αj and γk have algebraic intersection

numbers 1 if j = k, 0 otherwise. If we had a periodic domain with a nontrivial

boundary along αi, then after winding sufficiently along γi, the multiplicity of some

region of the periodic domain with boundary in αi becomes negative. The argument

for that relies on the observation that, since the total boundary of the periodic do-

main has algebraic intersection number 0 with γi, and since all the other α curves

have algebraic intersection number 0, while αi has nonzero algebraic intersection,

the boundary of the periodic domain must also include a β curve which has nonzero

algebraic intersection number with γi. Thus after each winding along γi, the domain

of the periodic domain which has boundary on αi has a region where the multiplicity

is decreased. Hence after sufficiently many windings, we can ensure that any periodic

domain with boundary in one of α1, . . . , αg+k has at least one negative region.
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Furthermore, note that a periodic domain is uniquely determined by the part of its

boundary which is spanned by {[α0], . . . , [αg+k]}. Therefore, given a basis F, P1, . . . , Pn,

after winding sufficiently many times, we can make sure that each Pi has sufficiently

large multiplicities both positive and negative in certain regions of the Heegaard di-

agram where all other Pj’s have small multiplicities. Thus for a periodic domain to

have only positive multiplicities, it must be of the form mF + m1P1 + . . . + mnPn

such that m is much larger than |mi|. Then 〈c1(s),mF + m1P1 + . . . + mnPn〉 =

m〈c1(s), F 〉 +
∑n

i=1 mi〈c1(s), Pi〉 must be non-zero when k 6= 1 since m〈c1(s), F 〉

dominates the sum and 〈c1(s), F 〉 = 2 − 2k is non-zero. Thus the diagram can be

made weakly admissible when k > 1.

We remark that the configuration of the curves on F̄ is left intact. Also, the curve

δ in F has not been changed. Therefore, after winding we still have the points p

and q lying in the same region of the Heegaard diagram. From now on, we will use

the notation (Σ, α0, . . . , αg+k, β0, . . . , βg+k, z, w) for this diagram, which is weakly

admissible if k > 1. We will refer to this kind of diagrams as almost admissible. In

order to make sense of Heegaard Floer homology groups for our special Heegaard

diagram in the case when the lowest genus fibre is a torus (i.e. k = 1), we will need

to work in the perturbed setting since the periodic domain F prevents the diagram

from being weakly admissible. However, because we have an “almost admissible”

diagram, it suffices to perturb only in the “direction of the fibre class”.

Lemma 3.2.3. Given a basis of the abelian group of periodic domains in the form

F, P1, . . . , Pn, we can find an area form A on the Heegaard surface such that A([F ]) >

0 and A(span{P1, . . . , Pn}) = 0.

Proof. By the previous lemma, we can arrange that any periodic domain in the linear

span of {P1, . . . , Pn} has both positive and negative regions on the Heegaard surface.
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The rest of the proof now follows from Farkas’ lemma in the theory of convex sets.

See [19] Lemma 4.17− 4.18.

Now an area form A on the Heegaard surface gives a real cohomology class [η] ∈

H2(Y ; R) via the bijection between periodic domains and H2(Y ; Z). Namely, set

[η](P ) = A(P ). Choosing a representative η ∈ [A] we can consider the perturbed

Heegaard Floer homology HF+(Y, f, η). Since F is the only periodic domain which

prevents weak admissibility (only in the case k = 1) and η([F ]) > 0, we have a

well-defined group HF+(Y, f, η) by the following lemma :

Lemma 3.2.4. Given x,y ∈ Tα ∩ Tβ,i, j ∈ Z≥0 and r, s ∈ R there are only finitely

many homology classes ϕ ∈ π2(x,y), with nz(ϕ) = i− j and η(ϕ) = r−s which have

positive domains.

Proof. Let ϕ and ψ be in π2(x,y) , then ϕ − ψ ∈ π2(x,x). We can write ϕ − ψ =

mF + m1P1 + . . . + mnPn + nΣ. Since nz(ϕ) = nz(ψ), we have n = 0. Also since

η(ϕ) = η(ψ) and η(F ) 6= 0 while η(Pi) = 0, we conclude that m = 0. Finally, since

A(Pi) = 0 , we have A(ϕ) = A(ψ) but then there are only finitely many nonnegative

domains which have a fixed area.

Now, as explained in the introduction HF+(Y, f, η) is an invariant of (Y, [η]), in

fact it only depends on Ker(η) ∩ H2(Y ;Z), hence is independent of the value of

η([F ]).

The usual invariance arguments of Heegaard Floer theory, as in [26], imply that

HF+(Y, f, η) is independent of the choice of f within its smooth isotopy class. Also

note that a geometric way of choosing η is by choosing a section γ of f (a section

of f always exists) and letting [η] be the Poincaré dual of [γ]. In that case, we will

write HF+(Y, f, γ) for this perturbed Heegaard Floer homology group. In fact, the
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choice of the base points w and z as above gives a section of f . Namely, note that we

have arranged so that the image of z under the flow above both the northern and the

southern semi-circles lies in the same region as w. The union of these two gradient

flow lines can therefore be perturbed into a section of f , which we will denote by γw.

The group HF+(Y, f, γw) will be one of the main protagonists in this chapter. The

differential of this group can be made more explicit as follows: Choose a basis of the

group of periodic domains in the form F, P1, . . . , Pn such that F is the fibre of f and

Pi are periodic domains so that the boundary of Pi does not include α0 or β0 (This

can be arranged by subtracting a multiple of F ). Then if we choose η ∈ PD[γw] we

have η(span(P1, . . . , Pm)) = 0 and η(F ) = nw(F ) = 1. Therefore for any periodic

domain P , we have η(P ) = nw(P ). Thus there exists a function λ : Tα ∩ Tβ → R

such that for any ϕ ∈ π2(x,y), we have η(ϕ)− nw(ϕ) = λ(x)− λ(y). Hence, we can

define the differential for HF+(Y, f, γw) as follows:

∂+([x, i]) =
∑
y

∑
ϕ∈π2(x,y),nz(ϕ)≤i

#M̂(ϕ)tnw(ϕ)[y, i− nz(ϕ)]

This yields the same homology groups as the original definition where the differen-

tial is weighted by tη(ϕ): namely, the two chain complexes are related by rescaling

each generator [x, i] to tλ(x)[x, i]. When we consider HF+(Y, f, γw), we will always

consider the differential above.

3.2.2 Splitting the Heegaard diagram

As explained in the introduction, we will only consider the spinc structures on Y that

satisfy the adjunction equality with respect to Σmin; the set of isomorphism classes
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of such spinc structures was denoted by S(Y |Σmin). In this section we observe that

for s ∈ S(Y |Σmin), we obtain a nice splitting of the generators of the Heegaard Floer

complex into intersections in F and F̄ . Furthermore, we prove a key lemma en route

to understanding the holomorphic curves contributing to the differential.

Let us denote by Ileft the intersection of α1 × . . . × αg−k and β1 × . . . × βg−k in

Symg−k(Σ), and by Iright the set of intersection points of α0 × αg−k+1 × . . . × αg+k
and β0 × βg−k+1 × . . .× βg+k in Sym2k+1(Σ) such that each intersection point lies in

F̄ . Thus, each element of Iright consists of one point from the set of 4k intersection

points of α0 with η1, . . . , η2k, another point from the set of 4k intersection points of

β0 with ξ1, . . . , ξ2k and finally 2k − 1 points from the set of 2k points consisting of

the intersections of ξ̄i with η̄i for i = 1, . . . , 2l.

We have Ileft⊗ Iright ⊂ Tα∩Tβ, where Tα = α0× . . .×αg+k and Tβ = β0× . . .×βg+k
are the Heegaard tori in Symg+k+1(Σ). Denote by Cleft and Cright the free Λ−modules

generated by Ileft and Iright respectively.

Lemma 3.2.5. An intersection point x ∈ Tα ∩Tβ induces a spinc structure sz(x) ∈

S(Y |Σmin) if and only if x ∈ Cleft ⊗ Cright.

Proof. This follows easily from the following formula from Lemma 4.11 in [18]:

〈c1(sz(x)), F 〉 = e(F ) + 2nx(F )

where nx(F ) is the number of components of the tuple x which lie in F . Since sz(x) ∈

S(Y |Σmin), we have 〈c1(sz(x)), F 〉 = 〈c1(sz(x)),Σmin〉 = 2 − 2k. Also e(F ) = −2g,

hence the above formula gives

nx(F ) = 1 + g − k
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which is satisfied if and only if x ∈ Cleft ⊗ Cright.

Next, we prove an important lemma about the behaviour of holomorphic disks on the

tubular regions to the left of α0 and β0. This lemma lies at the heart of most of the

arguments about the behaviour of holomorphic curves that we are going to consider

subsequently. For the purpose of stating the next lemma, let a and b be parallel

pushoffs of α0 and β0 to the left (into the interior of F ). Let us label the connected

components of the domains in the cylindrical region between a and α0 by a1, . . . , a4k

and the cylindrical region between b and β0 by b1, . . . , b4k. Choose the labeling so

that a1 and b1 are in the same region as the arc δ, hence na1 = nb1 = nw.

Lemma 3.2.6. Let x = xleft ⊗ xright and y = yleft ⊗ yright be in Cleft ⊗ Cright and

A ∈ π2(x,y) and u be a Maslov index 1 holomorphic curve in the homology class

A. Assume moreover that the contribution of curves in class A to the differential is

non-zero. Then,

nw(u) = na1(u) = . . . = na4k
(u) = nb1(u) = . . . = nb4k(u)

Furthermore, if nz(u) = 0, then the projection to the Heegaard surface induced by u

can be arranged to be an unbranched cover around the cylindrical neighborhoods of

a and b (In other words, u “converges” to Reeb orbits around a and b upon neck-

stretching).

Proof. The proof will be obtained by “stretching the neck” along the curves a and

b′, where a is as before a parallel pushoff of α0 to the left, whereas b′ is a parallel

pushoff of β0 to the right (into the interior of F̄ ), chosen so that the marked point

z lies in between β0 and b′. We could just as well do the stretching along a and b

and get the first part of the statement, however it turns out that stretching the neck
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around a and b′ (and symmetrically a′ and b, where a′ is similarly a parallel pushoff

of α0 to the right) gives the stronger result stated above.

Suppose that there is an i (mod 4k) such that nai(u) 6= nai+1
(u) (one can argue in

the same way for bi’s). Thus the source S of u has a piece of boundary which maps

to the β arc that separates ai and ai+1. Let βj be the curve containing that arc. The

crucial observation is that the disk u has no corners in βj ∩ F , since x and y have

no components in βj ∩ F .

We now degenerate Σ along the curves a and b′. Specifically, this means that one

takes small cylindrical neighborhoods of the curves a and b′, and changes the complex

structure in that neighborhood so that the modulus of the cylindrical neighborhoods

gets larger and larger. Topologically this degeneration can be understood as follows:

After degenerating along a and b′, Σ degenerates into Σmax and Σmin and the homol-

ogy class A splits into Aleft and Aright corresponding to the induced domains on Σmax

and Σmin from the domain of A on Σ. (The definition of homology classes π2(x,y) in

this degenerated setting is given in Definition 4.8 of [19], it is the homology classes

of maps to Σmax × [0, 1] × R (and to Σmin × [0, 1] × R) which have strip-like ends

converging to x and y, and to Reeb chords at points of degeneration).

Next we analyze the holomorphic degeneration of u. Suppose that the moduli space of

holomorphic curves representing A is non-empty for all large values of the stretching

parameter. Then we conclude by Gromov compactness that there is a subsequence

converging to a pair of holomorphic combs of height 1 (in the sense of [19] section

5.3, see proposition 5.20 for the proof of Gromov compactness in this setting) u0

representing Aleft and u1 representing Aright (the limiting curves have height 1 because

otherwise one of the stages would have index ≤ 0, contradicting transversality – see

Proposition 5.5 of [19]). By assumption, the degeneration of u involves breaking along
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a Reeb chord ρ contained in a with one of the ends on a∩βj. Hence some component

S0 of the domain of u0 has a boundary component Γ, consisting of arc components

separated by boundary marked points, such that one of the arcs is mapping to βj

and, at one end of that arc, u0 has a strip-like end converging to the Reeb chord

ρ. Now, since there are no corner points on any of the β-arcs in Σmax, the marked

points on Γ are all labeled by Reeb chords on a (corresponding to arcs connecting

intersection points of β curves with a), and any two consecutive punctures on Γ are

connected by an arc which is mapped to part of a β arc which lies on the left half

of the Heegaard diagram. Thus, in particular there are no arcs in Γ which map to α

curves. Now, we can extend u0 at the punctures on Γ by sending the marked points

to the point of Σmax to which a collapses upon neck-stretching (This is possible since,

after collapsing a, u0|S0 viewed as a map to Σmax admits a continuous extension at

these points. Note that the projection to [0, 1]× R also extends continuously at the

punctures by the definition of holomorphic combs, see the proof of proposition 5.20

[19] for more details regarding this). Therefore, the image of the boundary component

Γ under the projection to [0, 1] × R remains bounded and is entirely contained in

0×R. Moreover, since the projection is holomorphic, the projection of Γ to 0×R is

a non-increasing function, and hence we conclude that Γ maps to a constant. Now,

the maximum principle implies that the entire component S0 has to be mapped to a

constant value in 0 × R. Therefore, S0 has all of its boundary components mapped

to β curves. Furthermore, the image of u0 restricted to boundary of S0 does not

intersect β0 because, even after the degeneration, β0 does not intersect any other

β curves; there cannot be a boundary component which is entirely mapped to β0,

since those type of boundaries are not allowed in the Heegaard Floer differential, and

the behaviours of u and u0 are the same around β0 as the degeneration takes place

outside of a neighborhood of β0. Therefore, u0 maps all of its boundary to β curves
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other than β0 in Σmax. Thus, u0 restricted to S0 gives a homological relation between

those β curves. However the β curves other than β0 remain linearly independent in

homology, even after the degeneration (some of them intersect at the degeneration

point). Hence, the chain represented by u0(S0) has to be a multiple of [Σmax], which

contradicts the assumption that nai(u0|S0
) 6= nai+1

(u0|S0
) and thus proves the first

part of the lemma.

Furthermore, suppose nz = 0, and after stretching the neck around a, suppose that

u is not an unbranched cover around a, which means that u0 has to have at least

one component S0 which has a boundary marked point where u0 converges to a Reeb

chord around a. The argument above then gives that u0(S0) has to be a multiple of

[Σmax]. However the marked point z lies in one of the domains in between b′ and β0,

hence nz(u) = nz(u0) = 0 does not allow u0 to surject onto Σmax. Thus we arrive at

a contradiction, which gives the second part of the lemma.

3.2.3 Calculations for fibred 3-manifolds and Cright

Before delving into a general study of Heegaard Floer homology for broken maps,

here we will calculate HF+(Y, η) in the case of fibred 3–manifolds. Some of these

calculations were done independently by Wu in [45], where perturbed Heegaard Floer

homology for Σg × S1 is calculated for all spinc structures. We take the liberty

to reconstruct some of the arguments presented there in this section since these

calculations will play a role for the calculations we do for general fibred 3–manifolds.

Even though we will do calculations in general for any fibred 3–manifold, we will

restrict ourselves to spinc structures in S(Y |F ), which will simplify the calculations.

Our conclusion is that ⊕s∈S(Y |F )HF
+(Y, η) has rank 1. See also [1] for a different
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approach in the case of torus bundles.

For fibred 3–manifolds, we have g = k, thus the Heegaard diagram has the curves

α0,β0, and the rest of the diagram is constructed from the standard configuration of

curves ξ̄1, . . . , ξ̄2k, η̄1, . . . , η̄2k as in Figure 3-2. Also we will see below that, for the

spinc structures in S(Y |F ), the generators of our chain complex are given by the

intersection points in Cright.

We first discuss the case of torus bundles. It will then be clear that the general case is

just a matter of notational complication. Also note that, in the case of torus bundles,

we have to use a perturbation η with η([F ]) > 0 as explained in the previous section

since our diagram is not weakly admissible. For higher genus fibrations, the diagram

is weakly admissible hence our calculation also determines the unperturbed Heegaard

Floer homology HF+(Y ). When doing explicit calculations we will always consider

the case of HF+(Y, f, γw) but clearly all arguments go through for any perturbation

with η satisfying η([F ]) > 0, or for the unperturbed case whenever the diagram is

weakly admissible.

Figure 3-3 shows the Heegaard diagram for T 3. Both the left and the right figure

are twice punctured tori, and are identified along the two boundaries (the one in

the middle and the one formed by the four corners) where the gluing of the left

and right figures is made precise by the labels at the four corners. On the right

side the standard set of arcs ξ̄1, ξ̄2, η̄1, η̄2 are depicted; the left side is constructed

by taking the images of these arcs under the horizontal flow (which is the identity

map for T 3), and winding ξ1 and ξ2 along transverse circles so that the diagram

becomes almost admissible (Note that the winding process avoids the region where

w is placed, as required: first ξ2 is wound once along a horizontal circle, then ξ1 is

wound twice along a vertical circle). For general torus bundles, the same construction
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Figure 3-3: Torus bundles

will give a Heegaard diagram, where ξ1 and ξ2 are replaced by their images under

the monodromy of the torus bundle. The important observation here is that the

right side of the diagram is always standard. We will show that all the calculations

that we need can be done on the right side of the diagram for the spinc structures

we have in mind. The calculation for T 3 is essentially the same as in [45]. However,

we will see that Lemma 3.2.6 plays a crucial role in the calculation for general torus

bundles. We first do the calculation for T 3.

Proposition 3.2.7. HF+(T 3, f, γw, s0) = Λ where s0 ∈ S(T 3|T 2) is the unique

torsion spinc structure on T 3.

Proof. As in Lemma 3.2.5, sx(z) ∈ S(T 3|T 2) if and only if x ∈ Cright, hence x can

be one of the following tuples of intersections depicted in Figure 3-3:

x1 = p1q2r1 x2 = p2q1r2 x3 = p3q4r1 x4 = p4q3r2

y1 = p4q1r2 y2 = p1q4r1 y3 = p2q3r2 y4 = p3q2r1
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Next, we apply the adjunction inequality for the other T 2 components, this implies

that the Heegaard Floer groups vanish except for the unique torsion spinc structure,

s0 which has c1(s0) = 0. The two other torus components are realized by periodic

domains in Figure 3-3 , one of them is the domain P1 including D2∪D3 and bounded

by α2 and β1, the other one is the domain P2 including D3 ∪D4 and bounded by α1

and β2. Then the formula 〈c1(sz(x)), Pi〉 = e(Pi) + 2nx(Pi), implies that the only

intersection points for which sz(x) = s0 are x1 and y1. Furthermore, note that D1 is

a hexagonal region connecting x1 to y1, hence it is represented by a holomorphic disk

ϕ1 ∈ π2(x1,y1), and the algebraic number of holomorphic disks in the corresponding

moduli space of disks in the homology class of ϕ1 is given by #M̂(ϕ1) = ±1 (See

appendix in [35]).

Now, given any other Maslov index 1 homology class A ∈ π2(x1,y1), we have A =

D1 + mF + m1P1 + m2P2. In particular, note that nz(A) = 1. Furthermore, if

we restrict to those with nw = 0 (that is m = 0), since m1P1 + m2P2 has both

positive and negative domains by almost admissibility, unless m1 = m2 = 0 there is

no holomorphic representative of A.

We conclude that ∂+[x1, i] = f(t)[y1, i− 1], where f(t) = ±1 + O(t) is invertible in

the Novikov ring. This implies that [y1, i] is in the image of ∂+. Thus in particular we

have ∂+[y1, i] = 0 for all i. Finally, there is no Maslov index 1 disk with nw = 0 which

connects x1 to itself or y1 to itself. Thus we conclude that in CF+(T 3, f, γw, s0):

∂+[x1, 0] = 0 ∂+[y1, i] = 0

∂+[x1, i] = (±1 + O(t))[y1, i− 1] for i > 0

Hence the homology is generated by [x1, 0], in other words HF+(T 3, f, γw, s0) = Λ
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as required.

From now on, we will simply write x1 for [x1, 0]. The next theorem generalizes this

calculation to any torus bundle.

Theorem 3.2.8. Let (Y, f) be a torus bundle and let s be in S(Y |T 2). Then,

HF+(Y, f, γw, s) = Λ if s = s0 where s0 is the spinc structure corresponding to

vertical tangent bundle and HF+(Y, f, γw, s) = 0 otherwise.

Proof. The main difficulty for the general torus bundle case that makes the calcu-

lation different from the calculation for T 3 is that we cannot a priori eliminate the

generators x2,x3,x4 and y2,y3,y4. In fact, if the first Betti number of the torus

bundle is equal to 1, these generators are in the same spinc class as x1 and y1.

Now, the domains Di are homology classes in π2(xi,yi), which have holomorphic

representatives ϕi with #M(ϕi) = ±1. Since any non-trivial periodic domain has to

pass through some region to the left of α0 or β0, any other homology class in π2(xi,yi)

which contributes to the differential has to have nw 6= 0 by Lemma 3.2.6. For the

same reason, any homology class in π2(xi,yj) for some i 6= j which contributes to

the differential has to have nw 6= 0 since there is no homology class in π2(xi,yj)

that lies in the right side of the diagram (this can be verified either by inspection,

or referring to the case of T 3, where xi and yj represent different spinc classes for

i 6= j). Moreover, the classes in π2(xi,xj) all have even Maslov index, hence do not

contribute to the differential. Therefore, we have

∂+[x1, i] = [y1, i− 1] (mod t) for i > 0

∂+[x1, 0] = 0 (mod t) ∂+[x2, i] = [y2, i] (mod t)
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∂+[x3, i] = [y3, i] (mod t) ∂+[x4, i] = [y4, i] (mod t)

where the higher order terms do not involve the xj’s. As before, because we are

working over a Novikov ring of power series, we conclude that [y1, i], [y2, i], [y3, i]

and [y4, i] are all in the image of ∂+. Furthermore, the only possible generator which

might be in the kernel of ∂+ is [x1, 0]. Finally lemma 3.2.9 below shows that there

is no holomorphic disk starting at x1 with nz = 0 and nw 6= 0. Hence we have

∂+[x1, 0] = 0 and the homology group ⊕s∈S(Y |T 2)HF
+(Y, f, γw, s) is generated by

[x1, 0]. Furthermore, sz(x1) = s0 so the theorem is proved.

Note also that the adjunction inequality implies that HF+(Y, f, γw, s) vanishes for

s 6∈ S(Y |T 2). Therefore the above calculation is in fact a complete calculation of

perturbed Heegaard Floer homology for torus bundles.

The following lemma which we alluded to in the above calculation holds in general

(not only in the fibred case). Let Y be any 3–manifold with b1 > 0, and f : Y → S1

a broken fibration with connected fibres. Construct the almost admissible Heegaard

diagram for f as before and let x1 ∈ Cright be given by the union of the intersection

points in α0∩β2, α2∩β0 , and ξ̄i∩ η̄i for i 6= 2, where the intersection point in α0∩β2

and α2 ∩ β0 are chosen so that the region containing z includes them as corners. (In

the case of the torus bundle this is the generator [x1, 0]). Note that the generators of

Cright can always be described from the standard diagram since the right hand side

of our Heegaard diagrams is always the same.

Lemma 3.2.9. Let ϕ ∈ π2(xleft⊗x1,yleft⊗yright) be a holomorphic disk in a class that

contributes non-trivially to the differential for given xleft,yleft,yright. If nz(ϕ) = 0,

then yright = x1 and the domain of ϕ is contained on the left side of the Heegaard

diagram (i.e. it is contained in F ).
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Proof. Consider the component of x1 which is an intersection point on β0, say p1.

Now, among the four regions which have p1 as one of their corners, one includes z,

namely D1, and two of them lie in the left half of the diagram, hence by lemma 3.2.6,

they must have the same multiplicity. Denote these regions by L1 and L2, so that

L1 and D1 share an edge on β0. If the component of ϕ which is asymptotic to p1 is

constant, then p1 is also part of yright. Otherwise, since ϕ has a corner which leaves

p1 and nz(ϕ) = 0, we must have a non-zero multiplicity at L2, but since L1 and L2

must have the same multiplicity, this implies that p1 has to be a member in yright.

The same conclusion applies for the point of x1 which lies on α0. But then there is a

unique way to complete these two intersection points to a generator in Cright, hence

we conclude that yright = x1. Thus ϕ is in π2(xleft ⊗ x1,yleft ⊗ x1).

Furthermore, since ϕ fixes x1, the intersection of the domain of ϕ with F̄ must

coincide with the intersection of some periodic domain for S1×Σk with F̄ (since any

domain that has no corners on the right side, can be completed to a periodic domain

on the Heegaard diagram of S1 × Σk by reflecting). However, it is easy to identify

all the periodic domains of S1 × Σk and observe that no non-trivial combination of

periodic domains for S1×Σk (if we leave out F and its multiples), can have the same

multiplicity in the regions immediately to the left of α0 and β0. However, by Lemma

3.2.6 this property has to hold. This proves the lemma.

Theorem 3.2.10. Let (Y, f) be a fibre bundle with fibre a genus g surface and let s

be in S(Y |Σg). Then, HF+(Y, f, γw, s) = Λ if s = s0 where s0 is the spinc structure

corresponding to vertical tangent bundle and HF+(Y, f, γw, s) = 0 otherwise.

Proof. The proof is essentially the same as the proof of the corresponding theorem for

the torus bundles. The only difference is the number of generators which are cancelled

out: there are now 8g generators x1, . . .x4g, y1, . . . ,y4g, and the 4g hexagonal regions
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of F̄ (see Figure 3-2) give ∂+[x1, i] = [y1, i−1] (mod t) and ∂+[xj, i] = [yj, i] (mod t)

for j ≥ 2. Arguing as before, the only generator left is again x1 which gives sz(x1) =

s0.

Note that this gives a new way of obtaining the results of the original calculation of

Ozsváth and Szabó in [26] for fibred 3–manifolds.

Corollary 3.2.11. Let (Y, f) be a fibre bundle with fibre a genus g > 1 surface and

let s be in S(Y |Σg). Then, HF+(Y, s) = Z if s = s0 where s0 is the spinc structure

corresponding to vertical tangent bundle and HF+(Y, s) = 0 otherwise.

Proof. Since the diagram is weakly admissible, we can let t = 1 and the result follows

from the previous theorem.

In general, let ∂+
right be the contribution to the Heegaard Floer differential from the

holomorphic disks whose domain lies in F̄ (i.e. the disks which lie on the right

half of our almost admissible Heegaard diagrams), also let CF+
right = Cright⊗Λ[Z≥0],

the chain complex associated with the right side of the diagram for the purpose of

constructing HF+ theory.

Corollary 3.2.12. (CF+
right, ∂

+
right) is a chain complex with rank 1 homology generated

by x1.

Proof. This is only a reformulation of the above results.

3.3 The isomorphism

In this section, we prove the main theorem of this chapter. Namely, we prove that

the perturbed Heegaard Floer homology group HF+(Y, f, γw) is isomorphic to the

Floer homology of the chain complex (Cleft, ∂left; Λ). Before stating our theorem let
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us digress to give a rigorous definition of the latter chain complex.

3.3.1 A variant of Heegaard Floer homology for broken fi-

brations over the circle

Let Y be a 3–manifold with b1 > 0, and let f : Y → S1 be a broken fibration with

connected fibres, and satisfying the conditions at the beginning of Section 3.2.1. As

before consider the highest genus fibre Σg and let α1, . . . , αg−k and β1, . . . , βg−k be

tuples of g − k disjoint linearly independent simple closed curves on Σg obtained

from the attaching circles corresponding to the critical values of f , and let w be a

base point that is in the complement of α and β curves. As in Lemma 3.2.2, we can

arrange by winding if necessary that there are no periodic domains. We define the

Floer homology of such a configuration in a manner similar to the usual Heegaard

Floer theory by defining the chain complex to be the Λ−module freely generated by

intersection points of Tg−k
α = α1 × . . . αg−k and Tg−k

β = β1 × . . . βg−k in Symg−k(Σg),

equipped with a differential given as follows:

∂x =
∑

ϕ∈π2(x,y),µ(ϕ)=1

#M̂(ϕ)tnw(ϕ)y

For reasons that will be clarified in Section 3.4, we will denote the homology group

that we expect to get from this construction QFH ′(Y, f ; Λ). This stands for quilted

Floer homology of the broken fibration (Y, f) with coefficients in Λ. There are at least

two obvious issues that we need to address in order to make sure that QFH ′(Y, f ; Λ)

is well-defined. The first issue is the compactness of the moduli space M(ϕ). The

second issue is proving that ∂2 = 0. The setup here is more delicate than the
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usual setup of Heegaard Floer homology due to the fact that Symg−k(Σg) is not a

(positively) monotone symplectic manifold when k > 0 (it has 〈c1, [Σg]〉 = 2− 2k)).

Therefore, one expects the existence of configurations with negative Chern number

bubbles. However, we will adopt the cylindrical setting of Lipshitz ([18]), whereby one

considers pseudo-holomorphic curves in Σg×[0, 1]×R instead of disks in Symg−k(Σg),

and choose our almost complex structures from a sufficiently general class. Namely,

one chooses a translation-invariant almost-complex structure J on Σg × [0, 1] × R

such that J preserves a 2-plane distribution ξ on Σg × [0, 1] which is tangent to Σg

near (α ∪ β)× [0, 1] and near Σg × ∂[0, 1] (see [18], axiom J5’ ). Now we can show

that transversality can be achieved for holomorphic curves in the homology class

of the fibre of the projection Σg × [0, 1] × R → [0, 1] × R. However the expected

dimension of these curves is negative, hence bubbling at interior points can be ruled

out a priori (see [18] Lemma 8.2). Furthermore, since we assumed that all the fibres

are connected, the (g−k)-tuples of curves are linearly independent in homology; this

implies that any boundary bubble lifts to a spherical class in π2(Symg−k(Σg)). By

choosing almost complex structures in a specific way as in [18] Lemma 8.2, we can

also avoid disk bubbles. Thus the compactness of M(ϕ) is ensured.

The drawback of this approach is that it does not correspond in a straightforward way

to the original setting in (Symg−kΣg,Tg−k
α ,Tg−k

β ) since such general almost complex

structures prevent the fibres of the projection to [0, 1] × R from being complex. In

this case, in order to be able work in Symg−k(Σg) one needs to establish a proper

combinatorial rule for handling bubbled configurations (for example by applying the

general machinery of virtual fundamental cycles [20]). It is reasonable to expect

that one would then get the same differential as above, but the argument would be

technically very involved. However, there is an exception to this, namely when we
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are in the strongly negative case, that is when g < 2k. We show in Section 3.4 that

in this case we can indeed use integrable complex structures of the form Symg−k(js)

for a path js of complex structures on Σ and still avoid bubbling by making use of

the Abel-Jacobi map.

The proof of ∂2 = 0 for QFH ′(Y, f ; Λ) will be part of the proof of the isomorphism

that we will construct between QFH ′(Y, f ; Λ) and HF+(Y, f, γw). Namely, this

follows from an identification between the Maslov index 1 moduli spaces in both

theories. Furthermore, we will also see in this section that QFH ′(Y, f ; Λ) is an

invariant of (Y, [f ]), that is it only depends on the homotopy class of f and, when

defined over Z, it will be an invariant of Y .

As usual in Floer homology theories, the groups QFH ′(Y, f ; Λ) are graded by equiv-

alence classes of spinc structures. Given an intersection point in x ∈ Tg−k
α ∩Tg−k

β one

gets a spinc structure s(x) ∈ S(Y |Σmin), as in Heegaard Floer theory, except we do

not need to consider any additional base point since the intersection point x gives

a matching of index 1 and 2 critical points of f , which in turn determines a spinc

structure by taking the gradient vector field of f outside of tubular neighborhoods

of these matching flow lines and extending it in a non-vanishing way to the tubular

neighborhoods. We remark that in our setup of Heegaard diagram for (Y, f), we

have the equality s(xleft) = sz(xleft ⊗ x1) (where x1 is as in Lemma 3.2.9).

Remark: Note that if we restrict to the case where we only count nw = 0 curves

and forget the data encoded in the α and β that do not come from the critical values

of f , we obtain Juhász’s sutured Floer homology groups associated with the diagram

(F, α1, . . . , αg−k, β1, . . . , βg−k) (see [14]). We will return to this below.
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3.3.2 Isomorphism between QFH ′(Y, f ; Λ) and HF+(Y, f, γw)

We now proceed to prove an isomorphism betweenQFH ′(Y, f ; Λ) andHF+(Y, f, γw).

As a first step, we make use of the calculations of the previous section. Let CF+
left =

Cleft ⊗ Λ[Z≥0] and CF+
right = Cright ⊗ Λ[Z≥0], using the splitting of generators of

HF+(Y, f, γw) as discussed in Section 3.2.2, so that we have CF+(Y, f, γw) = CF+
left⊗

CF+
right. We denote by ∂F and ∂F̄ = 1⊗∂right the contributions to the Heegaard Floer

differential from holomorphic curves whose domains lie in F and F̄ respectively.

Furthermore, we denote by ∂left ⊗ 1, the contribution of those holomorphic curves

whose domain lies in F and which act by identity on Cright with respect to the splitting

Cleft ⊗ Cright. (since the boundary of F includes points of intersections occurring in

Cright, this is a priori more restrictive than ∂F ). Lemma 3.2.9 implies that ∂left ⊗ 1

is a differential on Cleft ⊗ x1. The next proposition says that the homology of this

differential is isomorphic to HF+(Y, f, γw).

Proposition 3.3.1. HF+(Y, f, γw, s) ' H(Cleft⊗x1, ∂left⊗1, γw, s) for s ∈ S(Y |Σmin).

Proof. Both homology groups are filtered by nw. Therefore, there are spectral

sequences converging to both sides induced by the nw filtration. Furthermore, we

claim that there is a chain map:

F : Cleft ⊗ x1 → CF+
left ⊗ CF

+
right

given by

F (xleft ⊗ x1) = [xleft ⊗ x1, 0]

which induces an isomorphism of E1–pages of the spectral sequences associated with

both chain complexes. The fact that F is a chain map, is a consequence of Lemma
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3.2.9. More precisely, Lemma 3.2.9 gives that if a holomorphic map contributing to

the differential originates at [xleft ⊗ x1, 0] then it has to converge to a generator of

the form [yleft ⊗ x1, 0], and the domain of the map has to lie on the left half of the

Heegaard diagram; these are exactly the contributions to the differential captured

by ∂left ⊗ 1.

Furthermore, showing that F induces an isomorphism on the E1–pages of the spectral

sequences on both sides amounts to checking that

F ′ : (Cleft ⊗ x1, ∂
0
left ⊗ 1)→ (CF+

left ⊗ CF
+
right, ∂

0
left ⊗ 1 + 1⊗ ∂right)

is an isomorphism in homology, where ∂0
left ⊗ 1 denotes those holomorphic maps

contributing to the differential ∂F with nw = 0 (Here we have used Lemma 3.2.6 to

identify nw = 0 part of ∂+ with ∂0
left⊗1+1⊗∂right). The injectivity of F ′ in homology

follows from the fact that, by Corollary 3.2.12 (see also the proof of Theorem 3.2.10 ),

x1 does not lie in the image of ∂right. Thus, we only need to check that F ′ is surjective

in homology. Suppose that a1x1 + . . .+a4kx4k+b1y1 + . . .+b4ky4k ∈ CF+
left⊗CF

+
right

is in the kernel of ∂0
left⊗1+1⊗∂right, where we have chosen the notation so that ai and

bi are elements in CF+
left = Cleft⊗Λ[Z≥0], and xi and yi are the generators of Cright as

in Theorem 3.2.10. Now, because this element is in the kernel of ∂0
left⊗1+1⊗∂right,

we have

∂0
lefta1 = 0 and Ua1 + ∂0

leftb1 = 0

∂0
leftai = 0 and ai + ∂0

leftbi = 0 for i 6= 1

where U : CF+
left → CF+

left is the usual map in Heegaard Floer theory which maps
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[a, i] → [a, i − 1]. It appears in the above equation because the disk D1 connecting

x1 to y1 intersects the base point z with multiplicity 1. (Here we also chose an

orientation system so that ∂rightxi = yi, one can also do the same calculation if

∂rightxi = −yi.)

Now, observe that the above equations give

(∂0
left ⊗ 1 + 1⊗ ∂right)(bixi) = −aixi + biyi for i 6= 1

This gives us that 2biyi is in the kernel, which in turn, implies that ∂0
leftbi = 0 (This

holds unless we work over a field of characteristic 2, see below for that case). Thus,

ai = 0 and biyi is in the image of ∂0
left⊗ 1 + 1⊗∂right (In characteristic 2, we directly

conclude that aixi + biyi is in the image). Therefore, in either case we can ignore

all the terms other than a1x1 + b1y1. Furthermore, note that

(∂0
left ⊗ 1 + 1⊗ ∂right)(U

−1b1x1) = U−1∂0
leftb1x1 + b1y1 = −a1x1 + b1y1

Thus, we conclude that 2b1y1 is in the kernel, which implies that ∂0
leftb1 = 0 hence,

Ua1 = 0 and (∂0
left⊗1+1⊗∂right)(U

−1b1x1) = b1y1 hence we can ignore the term b1y1

and the fact that Ua1 = 0 implies that a1x1 is in the image of F as desired.

This concludes the proof of Proposition 3.3.1 since a chain map that induces an iso-

morphism of E1–pages induces an isomorphism at all pages of the spectral sequences

(see e.g. Theorem 3.5 of [23]), in particular the E∞–pages are the groups that we

have written in the statement of Proposition 3.3.1.

An immediate corollary that follows from the proof of Proposition 3.3.1 is that the U -

action on HF+(Y, f, γw, s) is trivial for s ∈ S(Y |Σmin). In fact, we have a splitting of

90



the long exact sequence induced by the U -action, which implies the following relation

with the hat-version of Heegaard Floer homology where the differential counts the

holomorphic curves with nz = 0 (see [26]).

Corollary 3.3.2. For s ∈ S(Y |Σmin),

ĤF (Y, f, γw, s) ' HF+(Y, f, γw, s)⊕HF+(Y, f, γw, s)[1]

Note that in the case that g(Σmin) = k > 1, there is no perturbation required thus the

above equality holds for the homology groups with integer coefficients. In particular,

this implies that HF+(Y, s) is algorithmically computable for s ∈ S(Y |Σmin) since

in [38] an algorithm for computing ĤF (Y, s) was given.

Finally, we are ready to state and prove our main result. Over the course of the proof

of the following theorem, we will see why the variant of Heegaard Floer homology

that we denoted by QFH ′(Y, f, s; Λ) is well-defined. More precisely, we will see that

the differential that we defined for QFH ′(Y, f, s; Λ) squares to zero.

Theorem 3.3.3. HF+(Y, f, γw, s) ' QFH ′(Y, f, s; Λ) for s ∈ S(Y |Σmin).

Proof. Because of Proposition 3.3.1, it suffices to prove that

H(Cleft ⊗ x1, ∂left ⊗ 1, γw, s) ' H(Cleft, ∂, s)

where the latter group is what we previously called QFH(Y, f, s). Clearly, we have

a one-to-one correspondence between the generators. Next, we will show that there

is an isomorphism of chain complexes. In fact, we will show that the signed counts

of Maslov index 1 holomorphic curves in π2(xleft ⊗ x1,yleft ⊗ x1) which contribute

to ∂left ⊗ 1 and Maslov index 1 holomorphic curves in π2(xleft,yleft) that contribute

to the differential ∂ are equal. First observe that for curves which stay away from
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the necks at α0 and β0, which are precisely those with nw = 0, this one to one

correspondence is clear. (These are the curves that contribute to the differential

∂0
left ⊗ 1 in Proposition 3.3.1).

Next, we discuss the curves which have nw 6= 0. The correspondence in this case will

be obtained by stretching the necks along a and b, which are respectively parallel

pushoffs of α0 and β0 to the left of the Heegaard diagram (into the region F ).

Let us first describe the holomorphic curves that contribute to ∂left ⊗ 1 with nw 6= 0

more precisely. Remember that by definition ∂left⊗1 counts those holomorphic curves

whose domain lies in F , hence they have nz = 0. Now, recall that Lemma 3.2.6 says

that the projection to the Heegaard surface is an unbranched cover around the necks

a and b. Let A ∈ π2(xleft ⊗ x1,yleft ⊗ x1) be a Maslov index 1 homology class which

is contributing to ∂left ⊗ 1. By degenerating the almost complex structure around a

and b on Σ, we get two homology classes Aleft ∈ π2(xleft,yleft) and Aright ∈ π2(x1,x1).

The domain of Aleft lies on Σmax and it determines a homology class for the type of

holomorphic curves contributing to the differential ∂. The domain of Aright has two

components Aaright and Abright, both supported in disks which are the domains between

α0 and a, with a collapsed to a point, and between β0 and b with b collapsed to a

point. We claim that the Maslov index of Aleft is equal to 1, and the Maslov indices

of each of the components in Aright are equal to 2nw. Since the degeneration is along

Reeb orbits, we have the formula

ind(A) = ind(Aleft) + ind(Aaright) + ind(Abright)− 2(Na +Nb)

where Na and Nb are the numbers of connected components of the unramified cover-

ing in the necks at a and b (clearly Na, Nb ∈ [1, nw]). Therefore, it suffices to see that
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ind(Aaright) = ind(Abright) = 2nw. This follows from the usual formula ind(Aaright) =

〈c1(s), Aaright〉 = e(Aaright) + 2nx(Aaright) = 2nw (since the homology class Aaright is nw

times the disk with boundary on α0, e(Aaright) = nw and nx(Aaright) = nw/2); similarly

for Abright. We deduce that ind(Aleft) = 1 + 2(Na + Nb) − 4nw, which implies that

ind(Aleft) = 1 and the coverings in the cylindrical necks near a and b are both trivial

(in other terms, after neck-stretching we have nw distinct cylinders passing through

each neck).

Furthermore, we have the evaluation maps :

evaleft : M(Aleft)→ Symnw(D)

evaright : M(Aaright)→ Symnw(D)

evbleft : M(Aleft)→ Symnw(D)

evbright : M(Abright)→ Symnw(D)

given by taking the preimages of the degeneration points of a and b and projecting to

D = [0, 1]×R. We claim that the moduli spaceM(A) can be identified with the fibre

product of moduli spacesM(Aleft)×BM(Aright), where B = Symnw(D)×Symnw(D)

and the fibre product is taken with respect to the above evaluation maps. This is a

consequence of a gluing theorem (see [28] Theorem 5.1 for the proof in a very closely

related situation and [6] for a discussion of gluing in a general context).

Finally, we will prove that (evaright, ev
b
right) : M(Aaright) ×M(Abright) → Symnw(D) ×

Symnw(D) has degree 1. This implies that, for the purpose of counting pseudoholo-

morphic curves, the fibre product of moduli spaces M(Aleft) ×BM(Aright) can be

identified with M(Aleft). Therefore, we can identify the moduli spaces M(A) and
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M(Aleft), as required.

To see that the evaluation maps have degree 1, we argue as follows: First, we repre-

sent the domain of the strips inM(Aaright) by the upper half of the unit disk so that

the upper half circle maps to α0 and the interval [−1, 1] maps to the β curve. Also,

represent the target disk by the unit disk, so that α0 corresponds to the unit circle

and the β arc is represented by the real positive axis, furthermore the degeneration

point of a as used to define the map evaright is mapped to the origin in this repre-

sentation. Thus, the moduli spaceM(Aaright) consists of holomorphic maps from the

upper half disk to the unit disk and evaright records the positions of the nw zeroes

of these maps. Now, any holomorphic map from the upper half disk to the unit

disk can be reflected (u(1/z̄) := 1/u(z)) to get a holomorphic map from the upper

half-plane to P1, mapping the real axis to the real positive axis. This can then be

further reflected about the real axis to get holomorphic maps from P1 to P1 which are

hence rational fractions of degree 2nw, with real coefficients (forced by the invariance

under conjugation) and with equivariance under z → 1/z̄. Now, such holomorphic

maps are classified by their zeroes (the poles are the reflections of the zeroes). In

our case, there are 2nw zeroes and none of these are real, so they are nw pairs of

complex conjugate points. Finally, we note that evaright maps any such holomorphic

map to the positions of its nw zeroes which lie inside the upper half-disk. Therefore,

evaright : M(Aaright) → Symnw(D) is in fact a diffeomorphism. In particular, it has

degree 1.

Note that when the minimal genus fibre has genus greater than 1, there is no per-

turbation required since the diagrams that we consider are weakly admissible in that

case. Hence, we get the above isomorphism for the homology groups with integer

coefficients.
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Corollary 3.3.4. Suppose that g(Σmin) = k > 1, then for s ∈ S(Y |Σmin) we have

QFH ′(Y, f, s; Z) ' HF+(Y, s).

Proof. This follows from the above result by letting t = 1.

In some cases, the quilted Floer homology groups can be calculated easily, the fol-

lowing special case is an example of this. Given two simple closed curves α and β

on a surface of genus greater than 1, let ι(α, β) denote the geometric intersection

number of α and β, i.e. the number of transverse intersections of their geodesic

representatives for a hyperbolic metric.

Corollary 3.3.5. Suppose that f has only two critical points, and let α, β ⊂ Σmax

be the vanishing cycles for these critical points. Then ⊕s∈(S|Σmin)HF
+(Y, f, γw, s) is

free of rank ι(α, β).

Proof. When f has only two critical points, QFH ′(Y, f) reduces to the Lagrangian

Floer homology of the simple closed curves α and β on the surface Σmax. This is

easily calculated by representing the free homotopy classes of simple closed curves

α and β by geodesics, which ensures that there are no non-constant holomorphic

discs contributing to the differential. In fact, any holomorphic disk would lift to a

holomorphic disk in the universal cover H2, which would contradict the fact that

there is a unique geodesic between any two points in H2. Therefore, the quilted

Floer homology is freely generated by the number of intersection points of geodesic

representatives of α and β.

We remark that if ι(α, β) = 1 , then the critical values can be cancelled. Thus for

non-fibred manifolds which admit a broken fibration with only 2 critical points the

rank of quilted Floer homology is greater than 1.
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3.3.3 An application to sutured Floer homology

The following definition of a sutured 3–manifold can be easily seen to be equivalent

to the standard definition (see Juhász [14]). A connected balanced sutured manifold

is a compact oriented 3–manifold with boundary Y such that Y can be equipped with

a broken fibration f : Y → [0, 1] whose fibers are surfaces with non-empty boundary

and f−1(0) and f−1(1) are homeomorphic surfaces such that each connected com-

ponent has exactly one boundary component (balanced condition). We can always

arrange that f−1(1/2) = Σmax is the highest genus fibre which is connected and as

one travels from 1/2 to 0 one attaches two handles along β1, . . . , βg−k and as one

travels from 1/2 to 1 one attaches two handles along α1, . . . , αg−k which are realized

as vanishing cycles of f on Σmax. The balanced condition translates to the condition

that the set of α curves and respectively the set of β curves are linearly indepen-

dent in H1(Σmax). The sutures s(γ) of Y correspond to the boundary components

of ∂Σmax and the annular neighborhoods A(γ) of Y are obtained from s(γ) by flow-

ing using the gradient flow of f along [0, 1] with respect to a metric such that the

gradient vector field of f preserves the boundary of Y .

In [14], Juhász constructs a variant of Heegaard Floer homology for sutured 3–

manifolds. This is simply, the Lagrangian Floer homology group HF (Symg−k(Σmax),

α1 × . . . × αg−k, β1 × . . . × βg−k) where the projections of the holomorphic curves

contributing to the differential on Σmax are required to stay away from the boundary

of Σmax.

In [15], Kronheimer and Mrowka construct an invariant of sutured manifolds using

monopole (resp. instanton) Floer homology, by constructing a closed 3–manifold

Yn and setting the sutured Floer homology of Y by defining it to be the monopole
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(resp. instanton) Floer homology of Yn. The construction of (Yn, fn) is by first

gluing T × [0, 1] where T is an oriented connected genus n ≥ 1 surface with non-

empty boundary, so that ∂T × [0, 1] is glued to the union of annuli A(γ), and then

identifying the fibres over 0 and 1 by choosing a homeomorphism between them. Note

that the balanced condition implies that fn has connected fibres. In the monopole

(resp. instanton) setting, Kronheimer and Mrowka define the sutured monopole

(resp. instanton) Floer homology of Y to be
⊕

s∈S(Y |Σmin) HM(Yn, s) and prove that

this is an invariant of the sutured manifold Y (in particular, it is also independent

of the genus n of T and the homeomorphism chosen in identifying fibres over 0 and

1). It was raised in [15] as a question, whether one can recover Juhász’s definition

of sutured Floer homology from the construction given above applied in the setting

of Heegaard Floer homology. In the next theorem, we give an affirmative answer to

this.

Theorem 3.3.6. For n ≥ 1,

SFH(Y, f) '
⊕

s∈S(Yn,Σmin)

HF+(Yn, s)

Note that this theorem in particular implies that the group on the right hand side is

independent of n and the chosen surface homeomorphism in the construction of Yn.

As usual, in the case that the lowest genus fibre of f1 has genus 1, one needs to use

coefficients in Λ.

Proof. Theorem 3.3.3 applied to (Yn, fn) yields that
⊕

s∈S(Yn,Σmin) HF
+(Yn, s) =

QFH ′(Yn, fn). Therefore, the proof will follow once we establish that SFH(Y, f) '

QFH ′(Yn, fn). This in turn relies on a simple observation about the Heegaard dia-

grams used in the definition of these groups, namely let us denote the maximal genus
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fibre of f by Σ, and the maximal genus fibre of fn by Σ ∪ T . Now, if an admissible

sutured Heegaard diagram of (Y, f) is given by (Σ, α1, . . . , αg−k, β1, . . . , βg−k), then

the Heegaard diagram for calculating QFH ′(Yn, fn) is given by (Σ∪T, α1, . . . , αg−k,

β1, . . . , βg−k). Note that there is no α or β curve entering T . Thus, the proof will be

complete once we prove that holomorphic curves contributing to the differential of

QFH ′(Yn, fn) do not enter to the region including T . Note that because of the ad-

missibility condition of the sutured Heegaard diagram of (Y, f) we can use an almost

complex structure which is vertical in a neighborhood of Σ × [0, 1] × R so that the

holomorphic curves contributing to the differential of sutured Floer homology ap-

pear as holomorphic curves contributing to the differential of QFH ′(Yn, fn). On the

other hand, we use a non-vertical almost complex structures as in Section 3.3.1, along

T×[0, 1]×R away from the boundary of T . Now, let u : (S, ∂S)→ (Σ∪T )×[0, 1]×R

be a holomorphic map contributing to the differential of QFH ′(Yn, fn). We would

like to show that the image of the projection of u to the Heegaard surface does not

hit T . This follows from a degeneration argument. Namely, suppose that the image

of the projection of u does hit T , then we can degenerate along Reeb orbits corre-

sponding to the attaching region of T to Σ, this would on one side give a holomorphic

map ũ : S̃ → T̃ × [0, 1]×R where T̃ is the closed surface obtained by shrinking each

boundary component of T to a point and S̃ is a part of the domain of the degenerated

map. The index formula (see for example [18]) gives that the expected dimension

of the moduli space of such maps is a positive multiple of χ(T̃ ), which is less than

or equal to zero since T has genus at least 1. Furthermore, our choice of almost

complex structures ensure transversality for such holomorphic maps, which yields

the desired contradiction (note that in the case that T has genus 1, we still obtain

a contradiction since we get a negative dimension for the transversely cut moduli

space after quotienting by the R action).
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3.4 Isomorphism between QFH(Y, f ; Λ) and QFH ′(Y, f ; Λ)

In this section, we relate QFH ′(Y, f) defined as a variant of Heegaard Floer homology

as in Section 3.3.1 with the original definition in terms of holomorphic quilts given

in the introduction, which we called QFH(Y, f). The arguments given here are

complete except in the statement of the main theorem (see Theorem 3.4.3) we make

an assumption about the non-existence of figure-eight bubbles. This is a new kind

of bubbling that arises in the study of holomorphic quilts when the width of a

strip is shrunk to zero (see [44] for more background on this). Under suitable strong

negativity assumptions, when g < 2k, we argue that figure-eight bubbles do not arise

by assuming a removal of singularities result. The assumption g < 2k is required

in order to avoid disk and sphere bubbles so that the group QFH(Y, f ; Λ) is well

defined. The new input here is that this condition is also sufficient to discard figure-

eight bubbles. However, a removal of singularities theorem for figure-eight bubbles

is missing at the time of this writing. It appears likely that this is actually not an

issue in the setting we consider; we hope to return to this at a later time. Until then

when discussing our results we make our arguments under the assumption that the

figure-eight bubbles do not arise.

Finally, we remark that all the theorems are stated for Floer homology groups over

the universal Novikov ring Λ, but as before, in the case where the lowest genus fibre

has genus greater than 1, one can use integer coefficients.
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3.4.1 Heegaard tori as composition of Lagrangian correspon-

dences

Recall that given a broken fibration f : Y → S1 with connected fibres, the quilted

Floer homology of Y is defined as the Floer homology of the Lagrangian correspon-

dences Lα1 , . . . , Lαg−k and Lβ1 , . . . , Lβg−k associated with the critical values of f ,

where as before we let the vanishing cycles for the critical values along the northern

semi-circle be α1, . . . , αg−k and those along the southern semi-circle be β1, . . . , βg−k.

Let us call the Floer homology of these Lagrangian correspondences HF (Lα,Lβ).

Note that the construction of these Lagrangians involves a choice of almost complex

structure j on the fibres of f .

Recall that given two Lagrangian correspondences, L1 ⊂ X × Y and L2 ⊂ Y × Z

such that L1 × L2 is transverse to the diagonal in Y , the composition L1 ◦ L2 is a

Lagrangian correspondence in X × Z given by the union of tuples (x, z) such that

there exists a y ∈ Y with the property that (x, y) ∈ L1 and (y, z) ∈ L2.

Now, for the class of almost complex structures j that are sufficiently stretched along

the vanishing cycles of f near its critical points, we have the following important

technical lemma about these correspondences which was conjectured by Perutz in

[31]:

Lemma 3.4.1. For g > k, Lα1 ◦ . . . ◦ Lαg−k and Lβ1 ◦ . . . ◦ Lβg−k are respectively

Hamiltonian isotopic to α1 × . . .× αg−k and β1 × . . .× βg−k in Symg−k(Σ) equipped

with a Kähler form ω which lies in the cohomology class η + λθ with λ > 0.

Here the classes η and θ are cohomology classes which generate the subspace of

cohomology classes which are invariant under the action of the mapping class group

. η is the Poincaré dual of the divisor {pt} × Symg−k−1(Σ) and θ corresponds to
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the intersection form on H2(Σ,R) via the Abel-Jacobi map, more precisely it is the

pullback by the Abel-Jacobi map of the theta divisor on the Jacobian.

This lemma is proved in appendix B. The proof is obtained by carrying out the

construction of Lagrangian correspondences as a family of degenerations. As the

required technical set-up is rather different we leave the proof to appendix B.

Recall that when defining QFH ′(Y, f,Λ) as a variant of Heegaard Floer homology

we have used Lipshitz’s cylindrical reformulation, by setting up the theory in Σmax×

[0, 1] × R. This was convenient because of the bubbling issues that may occur in

the negatively monotone manifold Symg−k(Σmax). However, in the strongly negative

case, when g < 2k, where bubbling can be ruled out for a generic path Js of almost

complex structures on Symg−k(Σmax) on the grounds that the moduli space of bubbles

in this case has negative virtual dimension. In fact, the proof of the lemma below

shows that in this case, one can also use a path of integrable complex structures as

in the case of the usual Heegaard Floer homology to make sense of this group. Thus,

the Floer homology groups can be formulated as a Lagrangian intersection theory in

Symg−k(Σmax).

Lemma 3.4.2. Suppose that Y admits a broken fibration with g < 2k. Then for

s ∈ S(Y |Σmin),

QFH ′(Y, f, s; Λ) ' HF (Symg−k(Σmax);α1 × . . .× αg−k, β1 × . . .× βg−k, s; Λ)

Proof. We first argue that for a generic path of almost complex structures {js} on

Σmax the induced integrable complex structures Symg−k(js) achieve transversality for

the holomorphic disks mapping to Symg−k(Σmax) which contribute to the differential

and furthermore for these complex structures no bubbling can occur because of the

101



strong negativity assumption g < 2k. The fact that these complex structures achieve

transversality is standard and follows exactly as in the case of the usual Heegaard

Floer homology set-up, see for example Proposition A.5 of [18]. To avoid bubbling,

we make use of the Abel-Jacobi map:

AJ : Symg−k(Σmax)→ Jac(Σmax)

The assumption g < 2k ensures that the Abel-Jacobi map is injective for j chosen

outside of a subset of complex codimension at least 1 (so that for a generic path js

it’s injective for all s). A generic choice of js therefore ensures that there cannot

be any non-constant holomorphic spheres mapping to Symg−k(Σmax). One can also

rule out disk bubbles in the same way: since the inclusions of α1 × . . . × αg−k and

β1 × . . . × βg−k to Symg−k(Σmax) are injective at the level of fundamental groups

and since the Abel-Jacobi map is injective and induces an isomorphism on the first

homology when g < 2k, the image of a holomorphic disc by the Abel-Jacobi map

represents a trivial relative homology class, therefore it is trivial. Hence, there cannot

be any non-constant holomorphic disk bubbles.

Now, applying the reformulation of Lipshitz, as in [18], allows us to translate the

Lagrangian Floer homology in Symg−k(Σmax) “tautologically” to the cylindrical set-

up in Σmax × [0, 1]× R (see appendix A in [18]).

Finally, we are ready state our theorem that establishes the isomorphism between

quilted Floer homology groups arising from Lagrangian correspondences with Hee-

gaard Floer homology.

Theorem 3.4.3. Suppose that Y admits a broken fibration with g < 2k and fur-

thermore assume that the widths of holomorphic quilts can be shrunk to zero without
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hitting any figure eight bubbles. Then for s ∈ S(Y |Σmin),

HF+(Y, f, γw, s) ' QFH ′(Y, f ; s,Λ) ' QFH(Y, f ; s,Λ)

Proof. The proof will be obtained by putting together the results obtained so far

together with Wehrheim-Woodward’s Theorem 5.0.3 in [44] which allows one to

compose Lagrangian correspondences without changing the Floer homology groups.

More precisely, Theorem 3.3.3 and Lemma 3.4.2 give us that HF+(Y, f, γw, s) '

QFH ′(Y, f ; s,Λ) ' HF (Symg−k(Σmax);α1 × . . . × αg−k, β1 × . . . × βg−k; Λ). Now,

Lemma 3.4.1 expresses the Lagrangians α1 × . . . × αg−k and β1 × . . . × βg−k as

transverse and embedded compositions of the Lagrangians Lαi and Lβj . Therefore,

we are in a position to apply Wehrheim-Woodward theorem (for the statement of

this theorem in the case we are using here, namely when the differential is perturbed

by the intersection number with nw see also Theorem 6.4 in [22]) , which says that by

shrinking the width of the strips which are part of the holomorphic quilts contributing

to the differential one can obtain an isomorphism between the Floer homology of the

Lagrangians α1 × . . .× αg−k, β1 × . . .× βg−k and the quilted Floer homology of the

Lagrangian correspondences Lα1 , . . . , Lαg−k and Lβ1 , . . . , Lβg−k . This completes the

proof.

Recall from [44] that a figure-eight bubble is given by a triple of holomorphic maps:

v0 : R× (−∞,−1]→ A, v1 : R× [−1, 1]→ B, v2 : R× [1,∞)→ C

such that

(v0(τ,−1), v1(τ,−1)) ∈ LAB, (v1(τ, 1), v2(τ, 1)) ∈ LBC
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where A,B and C are symplectic manifolds, and LAB ⊂ A × B and LBC ⊂ B × C

are Lagrangian correspondences. This is called a figure-eight bubble since, after

compactifying the domain to CP 1 = S2, when viewed from z =∞ the lines Im(z) =

±1 appear as a figure eight. It is conjectured in [44] that the maps (v0, v1, v2) can

be extended continuously to S2 by a point (v0(∞), v1(∞), v2(∞)) that lies in both

LAB ×C and A× LBC . In the next lemma, we show that if we assume this removal

of singularities at z = ∞ for finite energy figure-eight bubbles, then figure-eight

bubbles can be avoided in the proof of the previous theorem. We use the removal of

singularity assumption in order to define the homotopy class of a figure-eight bubble

which we then show to be trivial in the case g < 2k.

Lemma 3.4.4. Assuming the removal of singularities at z =∞ for figure-eight bub-

bles and g < 2k, the widths of the strips occurring in the differential of QFH(Y, f ; Λ)

can be shrunk to zero without hitting any figure-eight bubbles, i.e., the assumption

about non-occurrence of figure-eight bubbles can be removed in Theorem 3.4.3.

Proof. We first explain how to associate a homotopy class with a figure-eight bubble.

Consider the figure-eight bubble as two polar caps and an equatorial region, mapping

to manifolds A, B, C (B is where the strip near the equator maps) - with seams

mapping to the correspondences LAB and LBC in A× B and in B × C. The image

of the equator is a loop γ inside B.

Let l1 be the loop obtained by reflecting the equator along the “north” seam: it’s a

loop inside the northern polar region, bounding some disc D1. Similarly, let l2 be

the loop obtained by reflecting the equator along the “south” seam, i.e. a loop inside

the southern polar region, bounding some disc D2. All these loops and the equator

touch each other at the point at infinity where the seams come together.

Now we can deform the maps in the polar regions so that they are constant over D1
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and D2: namely, let (a, b, c) in A × B × C be the value of the map at the point at

infinity where everything attaches together (This is the precise moment where we

assume that there is a removal of singularity theorem for the figure-eight bubbles).

Then after a homotopy we can assume that every point of D1 maps to a, and every

point of D2 maps to c. After we do this, cut the domain along the equator, and look

first at the north hemisphere. We have on one hand a strip in B, and on the other

hand a disc in A, but the disc is constant north of l1, so we can cut it to a strip in A.

Then we can reflect, and get a strip in A×B, with one boundary (the seam) on the

given Lagrangian correspondence LAB, and the other boundary (the equator and the

reflected loop l1) mapping to {a}×γ. Similarly from the southern hemisphere we get

a strip in B×C, with one boundary mapping on the given Lagrangian correspondence

LBC , and the other boundary mapping to γ×{c}. Now take the strip in A×B, and

make it into a map to A× B × C just by taking the constant function c in the last

factor: so we get a strip with boundaries in LAB × {c} and {a} × γ × {c}. Take the

strip in B × C and similarly add in the constant map to a in A to get a strip with

boundaries in {a} × LBC and {a} × γ × {c}. Now we can glue these two together

and get a strip in A×B×C with boundaries in LAB ×{c} and {a}×LBC . So there

is a relative homology class associated with it.

We next argue that in the case g < 2k, this homology class has to be trivial for any

figure-eight bubble that might arise from shrinking the width of the strips that are

considered in the definition of QFH(Y, f, s; Λ) in the above theorem; this implies

that figure-eight bubbles would be just constant maps, i.e. no such bubbling occurs.

Namely, suppose A = Symn(Σ) , B = Symn−1(ΣL) and C = {pt}, where L is an α

curve or a β curve. (Recall that ΣL is obtained from Σ by collapsing L to a point and

taking the normalisation). This case is sufficient for our purposes as, when we shrink
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the widths of holomorphic strips that arise in quilted Floer homology, we can always

do successive shrinking in an order such that one of the seam conditions involves the

zeroth symmetric of the lowest genus fibre which is just a point. In our case we have

n ≤ g − k which is assumed to be less than k, and the genus of Σ is k + n which

is greater than 2n. As in Lemma 3.4.2, these conditions guarantee that the Abel-

Jacobi maps from A and B to corresponding Picard tori are injective. Furthermore,

the Abel-Jacobi map is holomorphic when it is viewed as a map from the relative

Hilbert scheme to the relative Picard fibration. Therefore, a figure-eight bubble for

the symmetric products gives rise to a figure-eight bubble for the Picard tori, with

seam conditions given by taking the images of LAB and LBC by the Abel-Jacobi

map. Let us denote by A′ and B′ be the Picard tori T 2(k+n)(Σ), T 2(k+n−1)(ΣL), and

C ′ = {pt} so that the Abel-Jacobi map sends A, B to A′, B′, and let LA′B′ and LB′C′

be the images of the Lagrangian correspondence LAB and LBC by the Abel-Jacobi

map. Now, in the previous paragraph, we have seen that homotopically a figure-

eight bubble can be regarded as a loop based at the constant path at (a, b, c) in the

path space Ω({a} × LBC , LAB × {c}), i.e., the set of paths ω : [0, 1] → A × B × C

such that ω(0) ∈ {a} × LBC and ω(1) ∈ LAB × {c}. Thus the homotopy class of a

figure-eight bubble is an element in π1(Ω({a}×LBC , LAB×{c})). Now note that, the

evaluation maps (ev0, ev1) : Ω({a}×LBC , LAB ×{c})→ ({a}×LBC)× (LAB ×{c})

give rise to a Serre fibration with fibre space homotopy equivalent to the loop space

Ω(A×B × C):

Ω(A×B × C) // Ω({a} × LBC , LAB × {c})

��
({a} × LBC)× (LAB × {c})
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A similar argument applies to A′, B′ and C ′ with the seam conditions LA′B′ and LB′C′ .

Therefore, we get the following homotopy exact sequences which are connected by

the Abel-Jacobi maps:

π1(Ω({a} × LBC , LAB × {c})) //

(aj)∗
��

π1(LBC)× π1(LAB) //

��

π1(A×B × C)

0 // π1(Ω({a′} × LB′C′ , LA′B′ × {c′})) // π1(LB′C′)× π1(LA′B′)

Now, we would like to show that the image of a figure-eight bubble by the Abel-Jacobi

map is contractible. Thus, we would like to show that the vertical map denoted by

(aj)∗ is zero. In fact, when n > 2 one can show that π1(Ω({a′}×LB′C′ , LA′B′ ×{c′})

is zero, but in order to also cover the case n = 2, we need to do a little bit of

diagram chasing. First observe that the rightmost vertical arrow is an isomorphism

since LA′B′ = AJ(LAB), LB′C′ = AJ(LBC) and the Abel-Jacobi map is injective.

Also note that π2(A′ × B′ × C ′) = 0 since A′ and B′ are tori and C ′ = {pt}.

Therefore, it suffices to show that the map π1(LBC) × π1(LAB) → π1(A × B × C)

is injective. Perutz shows in [31] Lemma 3.18 that the inclusion of a Lagrangian

correspondences is injective at the level of fundamental groups. This is done by

calculating the maps π1(LAB) → π1(A × B) and π1(LBC) → π1(B × C). In the

case at hand topologically we have A = Symn(Σ) , B = Symn−1(ΣL), LAB is a

trivial circle bundle over Symn−1(ΣL) so has fundamental group Z × H1(ΣL) when

n > 2 and Z × π1(ΣL) when n = 2, where the fibre of the circle bundle generates

the Z component. This maps to π1(A × B) = H1(Σ) × H1(ΣL) when n > 2 and

π1(A×B) = H1(Σ)× π1(ΣL) when n = 2, where the fibre class is mapped to L and

the restriction to H1(ΣL) sends a class [γ] to ([γ], [γ]) in H1(Σ)×H1(ΣL), where the

first component of this map is given by making sure γ doesn’t pass through the region
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of normalization and hence can be identified with a loop in Σ via parallel transport.

Furthermore, C = {pt} and LBC is a product torus L1 × . . .×Ln−1, such that when

viewed as loops on Σ, L,L1, . . . , Ln−1 are linearly independent in H1(Σ).

Thus, the map π1(LBC)× π1(LAB)→ π1(A×B × C) is given by:

Z×H1(ΣL)× Zn−1 → H1(Σ)×H1(ΣL)

(m, γ, r1, . . . , rn−1) → (mL+ γ, γ + r1L1 + . . . rn−1Ln−1)

for n > 2. The formula is similar in the case n = 2 if one replaces H1(ΣL) by

π1(ΣL). This map is clearly injective since the lift of γ to Σ and L are independent

in H1(Σ). Therefore, the map (aj)∗ is zero, and the image of a figure-eight bubble

by the Abel-Jacobi map has to be contractible, which implies that it cannot carry

any symplectic energy, thus it cannot have any holomorphic representative unless it

is a constant map. Since the Abel-Jacobi map is holomorphic, this completes the

proof of the non-occurrence of figure-eight bubbles.

3.4.2 Floer’s excision theorem

Here we describe a proof of Floer’s excision theorem for quilted Floer homology. In

light of the theorem in the previous section this gives a new and more straightforward

proof of Floer’s excision theorem for Heegaard Floer homology. In this section, we

will denote by QFH(Y, f ; Λ), the quilted Floer homology of (Y, f) thought as the

Floer homology group, HF (Lα,Lβ; s,Λ), using Theorem 3.4.3.

In order to prepare the set-up, consider two broken fibrations f1 : Y1 → S1 and

f2 : Y2 → S1. Let g1 and g2 be the genera of the maximal genus fibres of f1 and f2
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and k be the genus of the minimal genus fibres of f1 and f2 which we assume to be

equal. Let us denote by Σi a fixed minimal genus fibre of fi. Now cut each Yi along

Σi, to obtain manifolds Y ′i with boundary Σi ∪ (−Σi). Choose a diffeomorphism

φ : Σ1 → Σ2 and form a new closed 3–manifold Y by gluing Σ1 to −Σ2 and −Σ1

to Σ2 using φ. Y comes equipped with a broken fibration f induced by f1 and f2.

Furthermore, given spinc structures s1 ∈ S(Y1|Σ1) and s2 ∈ S(Y2|Σ2), one gets an

induced spinc structure s = s1#s2 ∈ S(Y |Σmin) . Floer’s excision theorem in this

context is as follows :

Theorem 3.4.5. Suppose that g1 + g2 < 3k, then for s ∈ S(Y |Σmin) we have a split

short exact sequence of graded groups

⊕
{s1,s2|s1#s2=s}

QFH(Y1, f1, s1; Λ)⊗QFH(Y2, f2, s2; Λ)→ QFH(Y, f, s; Λ)

→
⊕

{s1,s2|s1#s2=s}
Tor (QFH(Y1, f1, s1; Λ), QFH(Y2, f2, s2; Λ))

Proof. The proof of this theorem in the setting of QFH(Y, f ; Λ) follows from the

definition of quilted Floer homology in a straightforward way. The crucial observation

is that for the spinc structures in consideration, the function ν : S1\crit(f) → Z≥0

defined by 〈c1(s), Fs〉 = 2ν(s)+χ(Fs) is zero for the fibres Σ1, Σ2 and Σmin, hence the

cutting and gluing operations take place where the holomorphic quilts contributing

to differentials live in a zeroth symmetric product and so are constant in those

regions. Therefore, there is an isomorphism of the tensor product of chain complexes

associated with (Y1, f1) and (Y2, f2) with the chain complex associated with (Y, f),

thus the theorem follows.

One issue that we are not addressing here is the fact that, as constructed, f does
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not satisfy the conditions stated at the beginning of Section 3.2.1 on the ordering of

index 1 and 2 critical values. However the results of [17] imply that perturbing f to

achieve these conditions would not affect QFH(Y, f, s).

We remark that the excision theorem for quilted Floer homology allows us to ap-

ply the constructions developed by Kronheimer and Mrowka in [15] in the context

of quilted Floer homology. In particular, one can define knot invariants in this

way.

3.4.3 4–manifold invariants

We first recall the definition of broken Lefschetz fibrations on smooth 4-manifolds.

Definition 3.4.6. A broken fibration on a closed 4–manifold X is a smooth map

to a closed surface with singular set A ∪ B, where A is a finite set of singularities

of Lefschetz type near which a local model in oriented charts is the complex map

(w, z) → w2 + z2 , and B is a 1-dimensional submanifold along which the fibration

is locally modelled by the real map (t, x, y, z)→ (t, x2 + y2 − z2), B corresponding to

t = 0.

It was proven in chapter 2 that every closed oriented smooth 4–manifold admits

an equatorial broken Lefschetz fibration to S2 (see also [2] where the authors give

a new proof of this result using Kirby calculus). Equatorial here means that the

1–dimensional part of the critical value set is a set of embedded parallel circles on

S2. Lagrangian matching invariants of a 4–manifold as defined by Perutz in [31] are

obtained by counting quilted holomorphic sections of a broken fibration associated

with the 4–manifold. These invariants, which are conjecturally equal to Seiberg-

Witten invariants, have a TQFT-like structure where the three manifold invariants
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are the quilted Floer homology groups that we have discussed in this chapter. Simi-

larly, Heegaard Floer homology is the three manifold part of a TQFT-like structure,

which underlies the construction of Ozváth-Szabó 4–manifold invariants [29].

By cutting a broken fibration along a family of circles that are transverse to the

equatorial circles of critical values, one can obtain a cobordism decomposition of the

4–manifold, such that each cobordism is an elementary cobordism, namely it is a

cobordism obtained by either a one or two handle attachment. Therefore, because of

Theorem 3.4.3, in order to equate the above mentioned four-manifold invariants for

the spinc structures which satisfy the adjunction equality with respect to the minimal

genus fibre of the broken fibration, one needs to check only that the cobordism

maps for one and two handle attachments in both theories coincide. This will be in

turn obtained by extending the techniques developed in this chapter to cobordism

maps. We plan to investigate this latter claim in a sequel to this chapter. This

will in particular prove that for the spinc structures considered, the Lagrangian

matching invariants are independent of the broken fibration that is chosen on the

4–manifold.
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Appendix A

Classification of (1, 1)–stable

unfoldings

Throughout, we denote by E(n) the set of germs at 0 ∈ Rn of smooth mappings from

Rn to R, and m(n) is the unique maximal ideal of E(n) consisting of those germs f

such that f(0) = 0.

Definition A.0.1. Let η ∈ m(n). An r–dimensional unfolding of η is a germ f ∈

E(n+ r) such that f |Rn = η.

For the next definition, recall the definition of (1, 1)–equivalence of unfoldings was

given in Definition 2.4.2.

Definition A.0.2. Let f ∈ m(n + d + 2) and let g ∈ m(n + 2). We say f (1, 1)–

reduces to g if there is a non-degenerate quadratic form Q on Rd such that f is (1, 1)–

equivalent to the germ g′ ∈ m(n+ d+ 2) given by g′(s, t, x, y) = g(s, t, x) +Q(y) for

s ∈ R, t ∈ R, x ∈ Rn, y ∈ Rd.

We will give a classification (1, 1)–stable unfoldings up to (1, 1)–equivalence based
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on the algorithm described in [43]. We shall make direct use of the lemmas and

theorems in [43] without restating them here.

Theorem A.0.3. Let f ∈ m(n + 2) be a (1, 1)–stable unfolding of η ∈ m(n)2.

Then either f has Morse singularity at 0, or f (1, 1)–reduces to a unique one of the

following unfoldings hi of germs vi :

vi hi

v0(x) = x3 h0(s, t, x) = x3 + tx

v1(x) = x3 h1(s, t, x) = x3 + t2x+ sx

v2(x) = x3 h2(s, t, x) = x3 − t2x+ sx

v3(x) = x4 h3(s, t, x) = x4 + sx2 + tx

We follow the same method as Wasserman’s classification of (3, 1)–stable unfoldingsin

[43]. In particular, the following special case of Theorem 4.11 from[43] plays a crucial

role in the classification. We say that f ∈ m(n+ 2) is 2–stable if

E(u, x) = 〈∂f
∂x
〉E(u, x) + 〈∂f

∂u
〉E(u) + F ∗E(R3)

where F (u, x) = (u, f(u, x)) for u ∈ R2, x ∈ Rn. This notion is very similar to

(1, 1)–stability which was given in Definition 2.4.3. The differenceis that here we

do not distinguish the variables s and t. In particular, (1, 1)–stability implies 2–

stability.

Theorem A.0.4. Let g ∈ m(n + 2) be a (1, 1)–stable unfolding of η ∈ m(n), and

suppose that f ∈ m(n+2) is a 2–stable unfolding of η. Then there exists a polynomial

germ p ∈ m(R) of degree at most 2 such that g is (1, 1)–equivalent to either f(s +
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p(t), t, x) or f(t, s+ p(t), x).

Proof of Theorem A.0.3: If f is (1, 1)–stable, then f is 2–stable and hence f has a

simple singularity or f reduces (in the sense of Definition 2.24 of [43]) to a unique

one of the unfoldings gi in Thom’s listof seven elementary catastrophes (see Theorem

2.20 of [43]). If the latter case occurs, then η reduces to a unique one of the germs

µi in Thom’s list. By Lemma 4.18 of [43], if η reduces to µi then f (1, 1)–reduces

to a two-dimensional unfolding h of µi which by Lemma 4.17 of [43] must be (1, 1)–

stable. Moreover, Lemma 4.19 together with Lemma 4.20in [43] implies that the

set of (1, 1)–stable unfoldings of µi to which f (1, 1)–reduces is exactly the (1, 1)–

equivalence class of h. Hence to complete the proof we need only to show that for

each germ µi in Thom’s list, thelist of Theorem A.0.3 gives exactly the classification

of (1, 1)–stable unfoldings of µi up to (1, 1)–equivalence.

First, consider the case of µ1(x) = x3. By Theorem A.0.4, a (1, 1)–stable unfolding f

up to (1, 1)–equivalence of µ1(x) = x3 is either x3+tx or of the form x3+(s+at2+bt)x

where a, b ∈ R. The former case is h0, so we concentrate on the latter case.

Corollary 4.13 of [43] gives the (1, 1)–stable condition for f as :

E(t, x) = 〈∂f0

∂x
〉E(t, x)+〈∂f0

∂t
〉E(t)+R〈∂f

∂s
|{s=0}〉+〈1, f0〉E(t)+m(t)2E(t, x)+m(t, x)4

where f0 = f |{s=0}. Thus, f is (1, 1)–stable if and only if

E(t, x) = 〈3x2 + (at2 + bt)〉E(t, x) + 〈2atx+ bx〉E(t) + R〈x〉+ 〈1, x3 + (at2 + bt)x〉E(t)

+ m(t)2E(t, x) + m(t, x)4.

An easy calculation then reveals that f is (1, 1)–stable if and only if a or b is nonzero.
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Suppose b 6= 0, then we change coordinates by setting t′ = s+at2 + bt, s′ = s and get

f is (1, 1)–equivalent to h0. On the other hand, if b = 0, then by scaling t, we obtain

that f is (1, 1)–equivalent to either h1 or h2. Furthermore, it is clear that none of

h0, h1 and h2 are (1, 1)–equivalent.

Now consider the case of µ2(x) = x4. By Theorem A.0.4, a (1, 1)–stable unfolding

f up to (1, 1)–equivalence of µ2(x) = x4 is either x4 + (s + at2 + bt)x2 + tx or

x4 + tx2 + (s+at2 + bt)x, where a, b ∈ R. In order to determine for which values of a

and b these maps are (1, 1)–stable, we again apply the criteria given by Corollary 4.13

of [43]. Suppose first f is given by x4 + (s+ at2 + bt)x2 + tx. Then f is (1, 1)–stable

if and only if

E(t, x) = 〈4x3 + 2at2x+ 2btx+ t〉E(t, x) + 〈2atx2 + bx2 + x〉E(t) + R〈x2〉

+ 〈1, x4 + (at2 + bt)x2 + tx〉E(t) + m(t)2E(t, x) + m(t, x)4.

It turns out that in this case f is (1, 1)–stable for all values of a and b. By Lemma

4.9 of [43] stably homotopic (1, 1)–stable germs are (1, 1)–equivalent. Therefore we

can set a = b = 0 and conclude that f is (1, 1)–equivalentto h3 = x4 +sx2 + tx.

Finally, suppose that f is given by x4 + tx2 + (s + at2 + bt)x. Then Corollary 4.13

of [43] yields that f is (1, 1)–stable if and only if

E(t, x) = 〈4x3 + 2tx+ at2 + bt〉E(t, x) + 〈x2 + 2atx+ bx〉E(t) + R〈x〉

+ 〈1, x4 + tx2 + (at2 + bt)x〉E(t) + m(t)2E(t, x) + m(t, x)4.

It is then an easy calculation to conclude that f is (1, 1)–stable if and only if b is

nonzero. Next, we again apply Lemma 4.9 of [43] to set a = 0, and conclude that f
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is (1, 1)–equivalent to x4 + tx2 + (s + bt)x. Now, we change coordinates by setting

t′ = s+ bt, s′ = −s/b. Then f becomes x4 + (s′+ t′/b)x2 + t′x. So we are back to the

previous case, hence we conclude that f is (1, 1)–equivalent to h3, as desired.
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Appendix B

Heegaard tori as compositions of

Lagrangian correspondences

Given a Riemann surface (Σ, j) and an embedded circle L ⊂ Σ, denote by ΣL, the

surface obtained by considering an elementary degeneration of Σ associated with the

Lefschetz fibration with vanishing cycle L over D2 and taking the normalization of

the singular fibre. Alternatively, ΣL is the surface obtained after surgery along L,

which is given by removing a tubular neighborhood of L and gluing in a pair of discs.

We also choose an almost complex structure j̄ on ΣL which agrees with j outside a

neighborhood of L. Note that this is a canonical construction, namely the moduli

of choices that are involved is a contractible space. To such data, Perutz associates

a Lagrangian correspondence VL ⊂ Symn(Σ)× Symn−1(ΣL) for a symplectic form of

the shape −ω⊕ωL where ω and ωL are Kähler forms in certain cohomology classes to

be specified below (see [31]). This is described in terms of a symplectic degeneration

of Symn(Σ). More precisely, one considers an elementary Lefschetz fibration over D2
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with regular fibre diffeomorphic to Σ and a unique vanishing cycle L which collapses

at the origin to a nodal curve Σ0. Here we fix complex isomorphisms between the

fibre above 1 and (Σ, L, j), and between the normalization of the fibre above 0 and

(ΣL, j̄). Then one passes to the relative Hilbert scheme, HilbnD2(Σ), of this fibration (a

resolution of the singular variety obtained by taking fibre-wise symmetric products).

The regular fibres of the induced map from HilbnD2(Σ) to D2 are diffeomorphic (non-

canonically) to Symn(Σ) and we identify the fibre above 1 with Symn(Σ). The

fibre above the origin, Hilbn(Σ0) is singular along a codimension 2 subset which we

identify with (Symn−1(ΣL). VL then arises from the vanishing cycle of this fibration.

More precisely, let ρ : Symn(Σ) → Hilbn(Σ0) be the parallel transport map along

[0, 1] induced by a global closed fibre-wise symplectic form Ω on HilbnD2(Σ) whose

restrictions to Symn(Σ) and Symn−1(ΣL) are in the same cohomology classes as ω and

ωL. Then one sets VΩ = {(x, ρ(x)) | ρ(x) ∈ Symn−1(ΣL)} and VL = (φ×φ̄)(VΩ), where

(φ, φ̄) is a symplectomorphism of Symn(Σ)×Symn−1(ΣL) which sends the symplectic

forms obtained by restriction of Ω to Symn(Σ) and Symn−1(ΣL) to the symplectic

forms ω and ωL (this symplectomorphism is produced using Moser’s lemma with a

specific class of Moser primitives that makes the flux of the resulting Lagrangian

isotopy zero, which is possible by Lemma 2.12 in [31]). Perutz proves in [31] that

the Hamiltonian isotopy class of VL is independent of the choice of Ω (see Theorem

A in [31]).

Consider now a Riemann surface (Σ, j) with two disjoint embedded circles L1, L2 ⊂

Σ. Applying the above construction to L1, we obtain a Lagrangian correspon-

dence

VL1 ⊂ (Symn(Σ)× Symn−1(ΣL1),−ω ⊕ ω1)

Since L2 is disjoint from L1, we have an embedded circle in ΣL1 , still denoted by L2,
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which is the image of L2 after surgery along L1. Now, applying the above construction

to L2 ⊂ ΣL1 under the assumption that n ≥ 2, we get

V̄L2 ⊂ (Symn−1(ΣL1)× Symn−2(ΣL1L2),−ω1 ⊕ ω12)

where ΣL1L2 is the result of surgery along L1 and L2.

It is then natural to consider the composition of Lagrangian correspondences :

VL1 ◦ V̄L2 ⊂ Symn(Σ)× Symn−2(ΣL1L2)

Recall that as a point set this is given by (x, y) ∈ VL1 ◦ V̄L2 if and only if there exists

a z ∈ Symn−1(ΣL1) such that (x, z) ∈ VL1 and (z, y) ∈ V̄L2 . VL1 ◦ V̄L2 can be more

geometrically described as the image of the projection to Symn(Σ)× Symn−2(ΣL1L2)

of the intersection (VL1 × V̄L2) ∩ ∆ in Symn(Σ) × Symn−1(ΣL1) × Symn−1(ΣL1) ×

Symn−2(ΣL1L2) where ∆ = {(x, y, z, t)|y = z}

To see that VL1 ◦ V̄L2 is a Lagrangian submanifold of Symn(Σ)× Symn−2(ΣL1L2) we

need to check the following properties :

• (transverse) (VL1 × V̄L2)>t ∆

• (embedded) Given (x, y) ∈ VL1 ◦ V̄L2 there exists a unique z ∈ Symn−1(ΣL1)

such that (x, z) ∈ VL1 and (z, y) ∈ V̄L2 .

Lemma B.0.1. The composition VL1◦V̄L2 is transverse and embedded. In particular,

VL1 ◦ V̄L2 is a Lagrangian submanifold.

Proof. To see that the composition is transverse, let x, y, z such that (x, y) ∈ VL1

and (y, z) ∈ V̄L2 . Observe that d(pr2)(T(x,y)VL1) = TySymn−1(ΣL1), where pr2 :
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Symn(Σ)× Symn−1(ΣL1)→ Symn−1(ΣL1) (because the parallel transport map from

VL1 to Symn−1(ΣL1) is onto, in fact VL1 is a circle bundle over Symn−1(ΣL1), see

Theorem A [31]). Therefore, T(x,y)VL1 + T(x,y,y,z)∆ already spans the tangent space

of Symn(Σ) × Symn−1(ΣL1) × Symn−1(ΣL1) × Symn−2(ΣL1L2) at (x, y, y, z). Hence

the composition is transverse as required. Suppose now that (x, y) ∈ VL1 then

(x, y) = (x, ρ(x)), where ρ : Symn(Σ) → Hilbn(Σ0) is the parallel transport map

(here Σ0 is the nodal curve obtained by collapsing L1 to a point). Therefore, y is

determined by x hence the composition is embedded.

Perutz proves that the Hamiltonian isotopy class of VL is independent of the choice of

Ω in HilbnD2(Σ), we will need the same type of statement for VL1 ◦ V̄L2 . The following

general lemma will be useful.

Lemma B.0.2. Suppose L,L′ ⊂ A × B and N,N ′ ⊂ B × C are Lagrangian corre-

spondences such that L and L′ are Hamiltonian isotopic via a product isotopy (φt, ψt)

on A×B, and N and N ′ are Hamiltonian isotopic via a product isotopy (ψt, ρt). If

the compositions L ◦ N and L′ ◦ N ′ are transverse and embedded, then L ◦ N and

L′ ◦N ′ are Hamiltonian isotopic via (φt, ρt).

Proof. The crucial point here is the fact, the components of the Hamiltonian isotopies

on the manifold B are the same, namely ψt. This ensures in a straightforward

way that the composition of (φt, ψt)(L) and (ψt, ρt)(N) is transverse and embedded.

Lemma B.0.3. The construction of VL1 ◦ V̄L2 in Symn(Σ) × Symn−2(ΣL1L2) is in-

dependent of the choices of global closed fibre-wise symplectic forms Ω ∈ HilbnD2(Σ)

and Ω1 ∈ Hilbn−1
D2 (ΣL1) up to Hamiltonian isotopy.

Proof. Suppose Ωs and Ω1
s are closed fibrewise symplectic forms staying in the same

cohomology classes for s ∈ [0, 1]. Perutz proves that V s
L1

and V̄ s
L2

stay in the same
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Hamiltonian isotopy class. However, this does not imply immediately that V s
L1
◦ V̄ s

L2

are in the same Hamiltonian isotopy class as V 0
L1
◦ V̄ 0

L2
. Now, the first observation is

that the Hamiltonian isotopies that Perutz constructs are in product form, namely he

proves in Section 3.5 of [31] that there exists Hamiltonian diffeomorphisms (φs, ψs)

of Symn(Σ)× Symn−1(ΣL1) which sends VL1 to V s
L1

, furthermore it follows from the

proof of Theorem A in [31] that ψs can be chosen to be arbitrary Hamiltonian dif-

feomorphism of Symn−1(ΣL1). Namely, the existence of the Hamiltonian isotopy

(φs, ψs) is due to a vanishing of a flux class as described in Lemma 2.8 of [31], and

the vanishing of the flux enables one to extend a chosen isotopy V s
L1

to an ambient

isotopy by modifying the chosen isotopy using vector fields that are tangent to the

isotropic distribution on V s
L1

, hence this does not modify the isotopy on Symn−1(ΣL1

(see Lemma 2.10 and Proposition 2.11 in [31]). We also have a Hamiltonian diffeo-

morphism (µs, ηs) of Symn−1(ΣL1) × Symn−2(ΣL1L2) which sends VL2 to V s
L2

. If we

choose ψs = µs, we are in a situation where we can apply Lemma B.0.2. The result

then follows.

Note that Lemma B.0.3 has an obvious generalization to compositions of k La-

grangians and the proof is the same.

Now we reverse the order of L1 and L2, and apply the same construction we obtain

another Lagrangian correspondence for the same symplectic manifold :

VL2 ◦ V̄L1 ⊂ (Symn(Σ)× Symn−2(ΣL1L2),−ω ⊕ ω12)

Note that implicitly, we pick a symplectic form ω2 on Symn−1(ΣL2) in order to

construct the correspondences VL2 and V̄L1 .

Perutz proves that VL1 ◦ V̄L2 and VL2 ◦ V̄L1 are smoothly isotopic and conjectures
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that in fact they should be Hamiltonian isotopic. This is the content of the following

theorem. Recall that the classes η and θ are cohomology classes in H2(Symn(Σ))

which generate the subspace of cohomology classes which are invariant under the

action of the mapping class group. η is the Poincaré dual of the divisor {pt} ×

Symn−1(Σ) and θ corresponds to the intersection form on H2(Σ,R) via the Abel-

Jacobi map, more precisely it is the pullback by the Abel-Jacobi map of the theta

divisor on the Jacobian.

In general, we work with Kähler forms (ω, ω1, ω2, ω12) which lie in cohomology classes

(sηΣ + tθΣ, sηΣL1
+ tθΣL1

, sηΣL2
+ tθΣL2

, sηΣL1L2
+ tθΣL1L2

) for s, t > 0.

When we deal with product tori, we will need to restrict to a more special class of

Kähler forms. Given an almost complex structure j on Σ, and n disjoint embed-

ded curves L1, . . . , Ln on Σ, we will call a symplectic form ω on Symn(Σ) taming

Symn(j) nearly symmetric if there exists an area form α on Σ compatible with j such

that:

• ω agrees with π∗(α×n) on a neighborhood of the L1× . . .×Ln, where π : Σ×n →

Symn(Σ) is the projection map.

• ω represents the class η + λθ for λ > 0 sufficiently small real number.

In Proposition 1.1 of [34] Perutz constructs nearly symmetric Kähler forms on Symn(Σ)

using smoothing theory for currents.

Theorem B.0.4. VL1 ◦ V̄L2 and VL2 ◦ V̄L1 are Hamiltonian isotopic in Symn(Σ) ×

Symn−2(ΣL1L2) for −ω⊕ω12, where ω and ω12 are Kähler forms lying in cohomology

classes ([ω], [ω12]) = (sηΣ + tθΣ, sηΣL1L2
+ tθΣL1L2

) for s, t > 0.

Furthermore, for n = 2, if ω is nearly symmetric for a complex structure j on Σ

which is sufficiently stretched along L1 and L2, then VL1 ◦ V̄L2 and VL2 ◦ V̄L1 are
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Hamiltonian isotopic to L1 × L2 in (Sym2(Σ), ω).

The proof will be obtained by generalizing the construction of Lagrangian corre-

spondences and their related properties worked out by Perutz in [31] to families of

such. Therefore, we will find it convenient to use the machinery developed in [31].

In order to have a self-contained exposition, we will borrow the statements of some

of the lemmas in [31], however for proofs of these lemmas we refer the reader to

[31]. The statement of the theorem has an obvious generalization to composition of

k Lagrangians. The proof we give below easily adapts to that case. At the end of

each step, we indicate the necessary adjustments, and at the end of the proof we

state the result for k compositions as a corollary.

Proof. Step 1: We first construct a holomorphic singular fibration f : X → D2×D2

with the following properties :

• X is a complex manifold and the fibres of f above (s, t) ∈ D2×D2 for s, t 6= 0

are complex submanifolds homeomorphic to Σ.

• For t 6= 0, restricting the fibration to D2 × {t} in the base, we get a Lefschetz

fibration with vanishing cycle L1, similarly for s 6= 0, restricting the fibration

to {s} ×D2 in the base, we get a Lefschetz fibration with vanishing cycle L2.

(Here we fix a complex isomorphism from Σ to the fibre above (1, 1) and the

vanishing cycles are the images of L1 and L2 on Σ under this identification.)

• The fibre above the origin is a complex submanifold, which is a nodal curve

with two nodal singularities obtained from Σ by collapsing both L1 and L2.

Consider first the map q : C2 → C given by (a, b)→ a2 + b2, and let

U = {x ∈ C2 : |q(x)| ≤ 1, ‖x‖4 − |q(x)|2 ≤ c}
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Let Z = {x ∈ C2 : |q(x)| ≤ 1, ‖x‖4 − |q(x)|2 = 0}. Then q : U\Z → D2 is a

holomorphic submersion whose fibres are pairs of holomorphic annuli. Next construct

the map q̃ : (pr∗1U) t (pr∗2U) → D2 × D2 by pulling back q using the projections

D2 ×D2 → D2 and taking the disjoint union of fibres.

Now, to construct f : X → D2×D2, we will glue the fibration q̃ : (U ×D2)t (D2×

U) → D2 ×D2 to the trivial fibration (Σ\(A1 t A2)) ×D2 ×D2, where A1 and A2

are annular neighborhoods of L1 and L2. In order to do this gluing in a way that the

resulting manifold X has an integrable complex structure, we now study the fibration

on U more explicitly. Namely, let x = (z1, z2), then ‖x‖4 − |q(x)|2 = 4(Im(z1z̄2))2.

Hence U = {(z1, z2) ∈ C2 : |q| ≤ 1, |Im(z1z̄2)| ≤
√
c/2}. Thus, U = U+ t Z t U−,

where U+ = U ∩ {|z1 + iz2| > |z1 − iz2|} , U− = U ∩ {|z1 + iz2| < |z1 − iz2|} and

Z = U ∩ {|z1 + iz2| = |z1 − iz2|}. Note that the set Z coincides with the zero

set of ‖x‖4 − |q(x)|2 in U . Now, the fibres of U+ and U− are annuli (of varying

moduli). Consider now U+ (same discussion applies to U−) and the holomorphic

map U+ → D2 × C∗ given by (z1, z2) → (z2
1 + z2

2 , z1 + iz2) = (q, w). This is a

biholomorphism onto {|q| < |w|2 ≤
√
c +

√
c+ |q|2}. Therefore, if we choose c ≥ 1

(this may require stretching j on Σ slightly along L1 and L2 so that we can still fix

a complex isomorphism between Σ and the fibre of f above (1, 1)) then U+ has a

holomorphic subbundle, which is identified with {(q, w) : 1 < |w|2 ≤ 2
√
c}. Now, to

glue U+ × D2 to the corresponding end of (Σ\(A1 t A2)) × D2 × D2, identify the

end of Σ\(A1 t A2) with an annulus of inner radius ρ , with 1 < ρ2 < 2
√
c and glue

the product of this annulus with D2×D2 to the holomorphic subbundle of U+×D2

along the region {(q, w) : ρ2 ≤ |w|2 ≤ 2
√
c} ×D2.

Doing this gluing at each end the construction of f : X → D2×D2 can be completed.

Note that the choice of the gluing parameters ρ at each end is from a contractible
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set. Furthermore, X comes equipped with an integrable complex structure for which

f is holomorphic and the required properties above are satisfied.

In order to cover the case of k compositions, one constructs a fibration over D2 ×

. . .×D2 (k times) by pulling back k disjoint copies of U as above and doing exactly

the same gluing operation along the boundary components of each U .

Step 2: We now pass to the relative Hilbert scheme of n points for the map f :

X → D2 ×D2. This replaces each fibre of f , by the Hilbert scheme of n points on

that fibre. Therefore we get, F : HilbnD2×D2(X) → D2 ×D2, where the fibres above

(s, t) are Hilbn(Xs,t), Xs,t being the fibre of the map f above (s, t).

One way to define the relative Hilbert scheme of a family of curves is to define it as the

pull back of the “universal” family over the moduli space of curves. These are smooth

projective varieties relative to the base. For details of this construction we refer the

reader to [31]. Here, we list the properties of F : HilbnD2×D2(X)→ D2 ×D2.

• The total space HilbnD2×D2(X) is a smooth Kähler manifold where the complex

structure J is induced by the complex structure on X.

• Hilbn(Xs,t) = Symn(Xs,t) for s 6= 0 and t 6= 0.

• The critical value set of F above (0, t) for t 6= 0 is Symn−1(ΣL1), and the critical

value set of F above (s, 0) for s 6= 0 is Symn−1(ΣL2).

All of these properties follow easily from the case of a relative Hilbert scheme of n

points for a D2-family of curves, which has been worked out by Perutz in [31], so

we do not reproduce the proofs here (the same reasoning applies in the case where

one considers fibrations over D2 × . . . × D2). Nevertheless, let us briefly indicate

the proof of the fact that the total space is smooth. In fact, note that we can cover
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HilbnD2×D2(X), by open sets of the form Hilbk1D2×D2(U1)×D2×D2 Hilbk2D2×D2(U2)×D2×D2

Hilbn−k1−k2D2×D2 (Σ\(A1 ∪ A2)), where U1 and U2 are respectively the components of the

domain of q̃ corresponding to L1 and L2. (This was used above to construct the

fibration f), and A1, A2 are slightly smaller annular regions in U1 and U2 respectively.

More precisely, we have:

HilbnD2×D2(X) =
⋃

0≤k1,k2≤n
Hilbk1D2×D2(U1)×D2×D2Hilbk2D2×D2(U2)×D2×D2Hilbn−k1−k2D2×D2 (Σ\(A1∪A2))

Now, each piece appearing above are open smooth pieces, namely they are biholo-

morphic to either D2 ×Hilb∗D2(q : U → D2) or D2 ×D2 × Sym∗(Σ\(A1 ∪A2)). Fur-

thermore, we know from [31] that each of these are smooth, and the fibered product

in this case is nothing but Hilbk1D2(U1)×Hilbk2D2
(U2)×Symn−k1−k2(Σ\(A1∪A2)).

One more property of F : HilbnD2×D2(X)→ D2×D2 concerning the critical value set

of F above which follows from the description above is as follows:

• Let S denote the fibre of f above the origin (a curve with two nodal singular-

ities obtained by collapsing L1 and L2 to singular points). Then the singular

locus of Hilbn(S) can be naturally identified to Hilbn−1(ΣL1,0) ∪Symn−2(ΣL1L2
)

Hilbn−1(ΣL2,0), where ΣLi,0 stands for the nodal curve obtained by collapsing

L1 and L2 to a point and normalizing only along Li.

We will write K = Symn−2(ΣL1L2) for the corresponding singular locus in the critical

value set of F . Furthermore, let Fs,t ⊂ HilbnD2×D2(X) denote the fibres of F and

let Ct ⊂ F0,t , Ds ⊂ Fs,0 denote the fibre-wise critical point sets of F for s and t

non-zero. We then set C0 = Hilbn−1(ΣL1,0) and D0 = Hilbn−1(ΣL2,0) using the above

identification of the singular locus above the origin. We will also make identifications
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of C1 = Symn−1(ΣL1) and D1 = Symn−1(ΣL2).

Now, let Ω ∈ Ω2(HilbnD2×D2(X)) be a fibre-wise non-degenerate Kähler form in the

cohomology class sηD2×D2 + tθD2×D2 . The existence of such a form is the content

of Lemma 3.12 in [31]. For large n, one uses the fact that HilbnD2×D2(X) is the

total space of a projective bundle over the relative Picard bundle. (the projective

variety fibering over D2 ×D2 such that each fibre parametrizes torsion-free sheaves

of rank 1 and degree n over Xs,t. See Section 3.3 in [31]). For smaller n, this follows

from descending induction (see also Step 7 below for a construction in the nearly

symmetric case).

For such an Ω, note that at the cohomological level one has

[Ω|Symn(Σ)] = [ω] , [Ω|Symn−1(ΣL1
)] = [ω1] , [Ω|Symn−1(ΣL2

)] = [ω2] , [Ω|Symn−2(ΣL1L2
)] = [ω12]

Here Symn(Σ) is identified with the regular fibre of F1,1, Symn−1(ΣL1) is identified

with C1, Symn−1(ΣL2) is identified with D1 and Symn−2(ΣL1L2) is as before identified

with the corresponding stratum K of the singular set above the origin.

• (C =
⋃
Ct → D2,Ω|C , J |C) and (D =

⋃
Ds → D2,Ω|D, J |D) are symplectic

Morse-Bott fibrations.

This again follows from the open cover of HilbnD2×D2(X) of the form Hilbk1D2(U1) ×

Hilbk2D2(U2)×Hilbn−k1−k2(Σ\(A1∪A2)), as considered above which allows us to reduce

to the case of a relative Hilbert scheme of n-points for D2-family of curves and that

was worked out by Perutz (see Proposition 3.6 in [31]).

Step 3: Next, using Ω we will define parallel transport maps.
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Let α, β : [0, 1]→ D2 ×D2 be the paths defined by

α(τ) =

 (1− 2τ, 1) if τ ≤ 1
2

(0, 2− 2τ) if τ ≥ 1
2

, β(τ) =

 (1, 1− 2τ) if τ ≤ 1
2

(2− 2τ, 0) if τ ≥ 1
2

Now, outside of the critical point set of F , one constructs the parallel transport as

usual by considering the horizontal distribution given by the symplectic complement

of the vertical bundle with respect to Ω. Namely, let

Hor = {v : Ω(v, w) = 0 for all w ∈ TFs,t}

Identify C1 with Symn−1(ΣL1) and D1 with Symn−1(ΣL2). Along the paths α, β :

[0, 1
2
] → D2 × D2, the set of points that flow from Symn(Σ) to Symn−1(ΣL1) and

Symn−1(ΣL2) defines the Lagrangian correspondences V Ω
L1
⊂ Symn(Σ)×Symn−1(ΣL1)

and V Ω
L2
⊂ Symn(Σ)× Symn−1(ΣL2).

Let F |C : C → D2 be the symplectic Morse-Bott fibration with fibre Ct. By defini-

tion, the Lagrangian correspondence V̄ Ω
L2

is defined by using the connection

HorC = {v ∈ TC : Ω|C(v, w) = 0 for all w ∈ TCt}

Similarly, let F |D : D → D2 be symplectic Morse-Bott fibration with fibre Ds. Then

again by definition the connection

HorD = {v ∈ TD : Ω|D(v, w) = 0 for all w ∈ TDt}

defines the Lagrangian correspondence V̄ Ω
L1

.
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In what follows, we will prove that V Ω
L1
◦ V̄ Ω

L2
is Hamiltonian isotopic to V Ω

L2
◦ V̄ Ω

L1
for

the symplectic form −Ω|Symn(Σ)⊕Ω|Symn−2(ΣL1L2
). Here we pause to explain why this

implies the statement of Theorem B.0.4.

Let us denote ωt = tΩ|Symn(Σ) +(1− t)ω. Similarly define ωt1, ωt2 and ωt12. By Moser’s

lemma, these induce symplectomorphims φt , φt1 ,φt2 , φt12. Then, as explained in the

proof of Lemma B.0.3 by Theorem A of [31] we have:

(φ1, φ1
1)(VL1) ' V Ω

L1

(φ1
1, φ

1
12)(V̄L2) ' V̄ Ω

L2

(φ1, φ1
2)(VL2) ' V Ω

L2

(φ1
2, φ

1
12)(V̄L1) ' V̄ Ω

L1

where ' denotes Hamiltonian isotopic. Furthermore, as in Lemma B.0.3, these

Hamiltonian isotopies can be arranged so that

(φ1, φ1
12)(VL1 ◦ V̄L2) ' V Ω

L1
◦ V̄ Ω

L2

(φ1, φ1
12)(VL2 ◦ V̄L1) ' V Ω

L2
◦ V̄ Ω

L1

Therefore, a Hamiltonian isotopy between V Ω
L1
◦V̄ Ω

L2
and V Ω

L2
◦V̄ Ω

L1
yields a Hamiltonian

isotopy between VL1 ◦ V̄L2 and VL2 ◦ V̄L1

Now, we return to proving that V Ω
L1
◦ V̄ Ω

L2
is Hamiltonian isotopic to V Ω

L2
◦ V̄ Ω

L1
. We will

drop Ω from the notation, and simply refer to these Lagrangian correspondences by

VL1 ◦ V̄L2 and VL2 ◦ V̄L1 . Furthermore, we will write Ω|Symn(Σ) = ω , Ω|Symn−1(ΣL1
) =

ω1 , Ω|Symn−1(ΣL2
) = ω2 , Ω|Symn−2(ΣL1L2

) = ω12.
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To be careful, we have to note that a priori there is no reason why Hor, HorC and

HorD would match up nicely so that one could just homotope the paths α and β

to get Hamiltonian isotopies between VL1 ◦ V̄L2 and VL2 ◦ V̄L1 . To ensure that, we

will modify the Kähler form Ω to a “good form” in a neighborhood of the origin,

generalizing the construction in Proposition 2.17 of [31].

Digression: Morse-Bott tubular neighborhoods and associated symplectic

forms

In this digression, we recall some of the necessary aspects of the theory of symplectic

Morse-Bott fibrations and apply them to our setting. Our approach is to lay out only

the essentials in order to complete the proof of Theorem B.0.4, thus the interested

reader is invited to turn to [31] for a more comprehensive exposition of the tools used

here.

First, let us describe the local behaviour of the fibration F in a neighborhood of

the origin in terms of the normal bundles of K = Symn−2(ΣL1L2) (the codimension

2 part of the singular locus of F above the origin). Recall that F |C : C → D2

and F |D : D → D2 are Morse-Bott fibrations with singular locus equal to K. Let

pC : NC → K and pD : ND → K denote the normal bundles of K in C and D.

Note that these are complex bundles where the complex structures JNC and JND are

obtained by linearizing the restriction complex structures J |C and J |D where J is the

complex structure on HilbnD2×D2(X). By the holomorphic Morse-Bott lemma one can

find a Morse-Bott tubular neighborhood of K in C (resp. D). More precisely, this is

a tubular neighborhood embedding ι : DNC → C from a disc bundle neighborhood

of K in NC such that when restricted to a fibre over a point x ∈ K, ιx : DNC,x → C is

(JNC , J |C)-holomorphic and ι∗xΩC is a Kähler form, and the fibration pC (resp. pD) is

represented by its Hessian on each fibre in this tubular neigborhood. (The existence
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of Morse-Bott tubular neighborhoods is proved in Lemma 2.4 of [31]). Therefore,

in order to study the Kähler structure in a neighborhood of K, one can “linearize”

the problem by studying NC and ND. These have natural non-degenerate complex

quadratic forms, namely the Hessian of F |C and F |D, hence the structure groups are

reduced to O(2,C) (the group of complex isometries with respect to the quadratic

forms). Furthermore, the normal bundle NC has a distinguished totally real sub-

bundle {v ∈ NC : (D2F )pC(v)(v, v) = |v|2}, where |.| denotes the Hermitian metric

induced by restriction to fibres of the pull-back Kähler form ι∗Ω, so the structure

group further reduces to the compact subgroup SO(2) (The same statement is true

for ND). Therefore, we can write NC = PC ×SO(2) C2 and ND = PD×SO(2) C2, where

PC and PD are principal SO(2)-bundles (orthonormal frame bundles).

Recall that the linear action of SO(2) on C2 is Hamiltonian with moment map given

by µ : C2 → so(2)∗, µ(x) = (ξ → 1
2
(x, ξx)). Note that µ−1(0) = 0.

Now choose connection 1-forms αC ∈ Ω1(PC , so(2)) and αD ∈ Ω1(PD, so(2)). These

induce associated symplectic forms on tubular neighborhoods corresponding to NC

and ND given by

ΩC := p∗Cω12 + d〈µ, αC〉+ ωC2 , ΩD := p∗Dω12 + d〈µ, αD〉+ ωC2

Recall that we have ω12 = Ω|K . Now, let p : N = NC ⊕ ND → K be the normal

bundle of K in HilbnD2×D2(X). The above description of NC and ND yields N =

(PC × PD) ×SO(2)×SO(2) C4. Now consider the following associated symplectic form

on the tubular neighborhood of K corresponding to N :

ΩN := p∗ω12 + κ(d〈µ, αC〉+ d〈µ, αD〉+ ωC4)
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where κ > 0 is some small real number, which is determined by the following propo-

sition. We are now ready to state the next proposition which will allow us to replace

Ω by ΩN in N . This is a slight generalization of the proposition 2.17 in [31]. For the

sake of exposition, here we give a sketch of the proof following closely the proof con-

tained in proposition 2.17. (Note that in the case of composition of k Lagrangians,

one would have the deepest singular stratum over the fibre above (0, . . . , 0) identified

with K = Symn−k(ΣL1...Lk) and the normal neighborhood of K would be given as a

direct sum of k Morse-Bott tubular neighborhoods. One would then construct asso-

ciated symplectic forms on this neighborhood as above, and the proof of the below

proposition goes through just as well in that case).

Proposition B.0.5. Let (F : HilbnD2×D2(X)→ D2×D2,Ω, J) be the relative Hilbert

scheme associated to (Σ, L1, L2, j). There is a family of forms {Ωr}r∈[0,1] such that

Ω0 = Ω and Ω1|N = ΩN in a neighborhood of K. Furthermore,

• Ωr is tamed by J for all r.

• There exist one-forms αr such that dΩr
dr

= dαr with αr|HilbnD2×D2(X)\N = 0

and αr|K = 0.

Proof. First, one proves that one can deform Ω in a Morse-Bott tubular neighborhood

of K so that it becomes invariant under unitary gauge transformations in the sense

that along K one can arrange that, Ω|T vertN = κωC4 where κ > 0 is a fixed small

constant (which we can take arbitrarily small). This is the content of Lemma B.0.6

below, where we set S = (PC×PD)×SO(2)×SO(2) R4 and g = D2F ; we refer to Lemma

2.18 in [31] for a proof. (In fact, by adapting the proof of lemma B.0.6 to our case we

can arrange that Ω becomes invariant under SO(2)× SO(2)-gauge transformations

only, this would mean Ω|T vertN = sωC2 ⊕ tωC2 where s, t > 0 but we do not need

this here.)
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Now, fixing the connection 1-forms αC and αD, introduce the form ΩN = p∗ω12 +

κ(d〈µ, αC〉 + d〈µ, αD〉 + ωC4) defined on N and is gauge invariant. Furthermore,

note that [Ω|N ] = [ΩN ] at the level of cohomology when restricted to N , hence

Ω|N = ΩN +dγ for some 1-form γ on N . Note that dγ vanishes along K since Ω and

ΩN have been arranged to agree along K by applying Lemma B.0.6 in the previous

paragraph. Thus we can arrange for γ to vanish to order 2 along K. This also implies

that ΩN tames J in a neighborhood of K.

Now, let χδ : N → R be cutoff functions such that for δ > 0, χδ(ν) = χ( |ν|
δ

), where

|.| is the norm defined by the Hessian of F on N and χ : R≥0 → R is identically 0

on [0, 1] and 1 on [2,∞). Since ΩN and ΩN + dγ = Ω|N tame J in a neighborhood

of K (by choosing δ small we can assume that it contains the 2δ−neighborhood of

K), by convexity, we conclude that ΩN + χδdγ tames J . Now consider the forms

ΩN + d(χδγ). These differ from ΩN + χδdγ by dχδ ∧ γ. Choosing δ small, we can

make dχδ ∧ γ small within the 2δ-neighborhood of K . Thus we can assure that

ΩN + d(χδγ) tames J . Therefore the required family can be obtained by taking the

convex combination Ωr = (1 − r)Ω + r(ΩN + d(χδγ)). The required properties are

now obvious.

Lemma B.0.6. (Perutz [31], see also Seidel [39]) Let K be a compact manifold,

S → K be a real vector bundle with Euclidean metric g, and J an almost complex

structure on the total space of S⊗C acting by scalar multiplication by i on the fibres

of Sx ⊗ C. Furthermore, suppose that K is an almost complex submanifold. Let Ω

be a symplectic form on the disc-subbundle U = {v ∈ S ⊗ C : gC(v, v) < R} ⊂

S⊗C, compatible with J (where gC is the hermitian extension of g). Then there is a

deformation {Ωs}s∈[0,1] of Ω through symplectic forms taming J such that Ωs|K = Ω|K
and Ωs agrees with Ω near ∂U , Ω0 = Ω, and Ω1 is invariant under unitary gauge
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transformations along K.

Continuation of the proof of Theorem B.0.4:

Step4: Next, based on Proposition B.0.5 we can assume that Ω is equal to ΩN

in a neighborhood of K. More precisely, Proposition B.0.5 gives the existence of

a Ω which is equal to ΩN in a neighborhood of K and Lemma B.0.3 implies that

the constructions of the Lagrangian correspondences VL1 ◦ V̄L2 and VL2 ◦ V̄L1 do

not depend on the choice of Ω up to Hamiltonian isotopy. (One could also say this

without invoking Lemma B.0.3, since the conditions on αr in Proposition B.0.5 imply

that the deformation Ωr induces a Hamiltonian isotopy V r
L1
◦ V̄ r

L2
).

Now, we argue that we can reduce to the case Ω = ΩN . We will put all the con-

structions in a sufficiently small neighborhood of K in order to work with the good

form ΩN . This will allow us to show that with respect to ΩN , VL1 ◦ VL2 = VL2 ◦ VL1

exactly as point sets and this will conclude the proof of B.0.4.

Let λ > 0 a small real number and identify the fibre above (λ, λ) with Symn(Σ)

using the parallel transport with respect to Ω along the diagonal path from (λ, λ)

to (1, 1) and the identification of Symn(Σ) with the fibre above (1, 1). Similarly

identify the fibre above (λ, 0) with Symn−1(ΣL1) using the parallel transport along

the path from (λ, 0) to (1, 0). Now, construct V λ
L1
◦ V̄ λ

L2
using the parallel transport

maps from (λ, λ) to (λ, 0) to (0, 0). Similarly, one constructs V λ
L2
◦ V̄ λ

L1
. Now, as in

Lemma B.0.3 and the discussion at the end of Step 3, constructing a Hamiltonian

isotopy between V λ
L1
◦ V̄ λ

L2
and V λ

L2
◦ V̄ λ

L1
guarantees the existence of a Hamiltonian

isotopy between VL1 ◦ V̄L2 and VL2 ◦ V̄L1 . Therefore, from now on we will assume

that we are in a sufficiently small neighborhood of K and we will use the good form

ΩN = p∗ω12 + κ(d〈µ, αC〉 + d〈µ, αD〉 + ωC4). The proof will be completed once we
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prove that VL1 ◦ V̄L2 = VL2 ◦ V̄L1 (point-wise equality) with respect to ΩN for λ

sufficiently small.

Note that the tangent space of NC (resp. ND and N = NC⊕ND) has two horizontal-

vertical decompositions. The original decomposition we had comes from the fibration

F |C : C → D2 and the Kähler form ΩC which we wrote as TNC,p,t = TpCt ⊕HorC,p,t

where p ∈ Ct. The second decomposition comes from the structure of C2-bundle over

K and the choice of αC . Any vector in T[x.z]NC can be expressed as the projection

of u# + v ∈ T(x,z)(PC × C2), where u# is the unique lift of a vector u ∈ TpC(x)K so

that αC(u#) = 0 and v ∈ TzC2.

The main purpose of introducing ΩN is that the parallel transport maps for the

fibration F preserve the fibres of the normal bundles NC and ND viewed as vector

bundles over K. More precisely, we claim that HorC ⊂ T vertNC , HorD ⊂ T vertND

and Hor⊂ T vertN .

We will prove this for NC , the proofs for ND and N are the same. Recall that

HorC = {v ∈ TC : Ω|C(v, w) = 0 for all w ∈ TCt}, where in our case we have

Ω|C = p∗Cω12 +κ(d〈µ, αC〉+ωC2). Take u1, u2 ∈ TpC(x)K and lift them in unique way

to u#
1 , u

#
2 on TxPC so that αC(u#

i ) = 0. Let v1, v2 ∈ TzC2 be vertical vectors, and

project u#
1 + v1 and u#

2 + v2 to T[x,z]NC , then we have

Ω|C(u#
1 + v1, u

#
2 + v2) = ω12(u1, u2) + κ(〈µ(z), dαC(u#

1 , u
#
2 )〉+ ωC2(v1, v2))

Now, in order to show that HorC ⊂ T vertNC , we need to prove that if u#
1 + v1 ∈

HorC,[x,z] then u#
1 = 0. Assume otherwise and take u2 ∈ TpC(x)K such that ω12(u1, u2) 6=

0, now consider its horizontal lift u#
2 . Note that u#

2 ∈ TCt since in the Morse-

Bott tubular neighborhood F is given by its Hessian, and by the Morse-Bott lemma
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the derivative of the Hessian of F along horizontal vectors is zero. Now, we have

Ω|C(u#
1 +v1, u

#
2 ) = ω12(u1, u2)+κ(〈µ(z), dαC(u#

1 , u
#
2 )〉). We claim that by restricting

to a smaller neighborhood of K if necessary (by letting λ be smaller), we can ensure

that Ω|C(u#
1 +v1, u

#
2 ) 6= 0. which contradicts the assumption u#

1 +v1 ∈ HorC . Hence

it follows that u#
1 = 0 and HorC ⊂ T vertNC . To see that κ(〈µ(z), dαC(u#

1 , u
#
2 )〉) is

small when restricted to a neighborhood of K, observe that µ(0) = 0 (in fact we also

have dµ(0) = 0), so in a neighborhood of K this expression will be small. Exactly

the same argument shows that HorD ⊂ T vertND and Hor⊂ T vertN .

Step5: Since the parallel transport respects the normal fibres to K it suffices to show

that VL1 ◦ V̄L2 = VL2 ◦ V̄L1 at each vertical slice of the normal bundle N . Therefore,

without loss of generality suppose that K is a point, then around K = {0} we can find

holomorphic coordinates associated to complex normal bundles NC = C2 with coor-

dinates (wC , zC), ND = C2 with coordinates (wD, zD) such that F (wC , zC , wD, zD) =

(w2
D + z2

D, w
2
C + z2

C) and ΩN = κ i
2
(dwC ∧dw̄C +dzC ∧dz̄C +dwD ∧dw̄D +dzD ∧dz̄D).

It is now easy to see that VL1 ◦ V̄L2 = VL2 ◦ V̄L1 . Indeed an explicit calculation of

the parallel transport shows that over α[0, 1/2] the set of points collapsing to Cλ is

given by

{(wD, zD, wC , zC) : w2
C + z2

C = λ,w2
D + z2

D = wDw̄D + zDz̄D ∈ α[0, 1/2]}

and over α[1/2, 1] the set of points collapsing to K = {0} is given by

{(0, 0, wC , zC) : w2
C + z2

C = wCw̄C + zC z̄C ∈ α[1/2, 1]}
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It follows that

VL1◦V̄L2 = {(wD, zD, wC , zC) : w2
C+z2

C = w2
D+z2

D = wCw̄C+zC z̄C = wDw̄D+zDz̄D = λ}

Clearly, this expression is symmetric so does not change if we instead used the path

β. Hence we conclude that VL1 ◦ V̄L2 = VL2 ◦ V̄L1 .

Step6: (nearly symmetric case) Suppose (ω, ω1, ω2, ω12) are nearly symmetric Kähler

forms and n = 2. We will construct a Kähler form Ω on the total space of F :

Hilb2
D2×D2(X) → D2 × D2 such that its restrictions to the regular fibres of F are

nearly symmetric. Furthermore, as before Ω will be the associated symplectic form

κ(ωC2 ⊕ ωC2) on the tubular neighborhood NC ⊕ND = C2 ⊕ C2 of K = {0}.

First, pick Ω on Hilb2
D2×D2(X) such that Ω|N = ΩN in a holomorphic Morse neigh-

borhood of K = {0} as in Proposition B.0.5. Let ε > 0 be sufficiently small so that

the image of N under F includes D2(ε) × D2(ε), product of disks of radius ε. Let

r : D2 ×D2 → D2(ε)×D2(ε) be the scaling map that sends (x, y)→ (εx, εy). Now,

we use r to first pullback the fibration f : X → D2 × D2, to get a new fibration

on Xε, denoted by r∗f : Xε → D2 × D2. These two fibrations are diffeomorphic

however the pull-back complex structure r∗J on the new fibration differs from the

original one. Namely, one could obtain the fibration r∗f as in the construction of

the fibration f in Step 1, if one started with an almost complex structure j on Σ

which is sufficiently stretched along the vanishing cycles L1 and L2. Thus, passing

to the pullback fibration has the effect of strecthing the complex structure j along

the curves L1 and L2 on the initial datum. More precisely, recall the construction

of the fibration f from the data (Σ, j, L1, L2) as in Step 1, involves first constructing
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the standard box neighborhood:

U = {x ∈ C2 : |q(x)| ≤ 1, ‖x‖4 − |q(x)|2 ≤ c(j)}

where q : C2 → C given by (a, b)→ a2 + b2 and identifying holomorphically the fibre

of q̃ : (pr∗1U) t (pr∗2U) → D2 × D2 above (1, 1) with a cylindrical neighborhood of

L1 and L2 in Σ (where pr1 and pr2 are projections to components of D2 ×D2) and

the constant c(j) is determined according to this identification. Note that the circles

L1 and L2 are identified in each U with the set q(x) = ‖x‖4 = 1. Now, the fibre

of r∗q̃ above (1, 1) (i.e. the fibre of q̃ above (ε, ε)) is biholomorphic to a cylindrical

neighborhood of L1 and L2 in (Σ, j′) where the complex structure j′ on Σ is obtained

from j by an appropriate stretching.

Now, the relative Hilbert scheme of the fibration r∗f is given by the pull back r∗F .

Therefore, we can consider the Kähler form r∗Ω on HilbD2×D2(X), where the latter

now denotes the relative Hilbert scheme of the fibration r∗f .

The advantage of this construction is that we can now ensure that the holomorphic

Morse neighborhood N = U × U ⊂ C2 × C2 of K = {0} for the fibration r∗F

can be constructed as the pull-back of the holomorphic Morse neighborhood for the

fibration F hence its projection to D2 × D2 is onto (here U denotes the standard

box neighborhood as above with j sufficiently stretched along L1 and L2). Thus,

the whole construction of VL1 ◦ V̄L2 takes place in the neighborhood N and the

form r∗Ω = ωC4 in this neighborhood. Furthermore, in the normal neighborhood

coordinates the fibration r∗F is given by (wC , zC , wD, zD)→ (w2
C + z2

C , w
2
D + z2

D) as

before. Moreover, the above identification of L1×L2 translates in these coordinates
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to:

L1×L2 = {(wD, zD, wC , zC) : w2
C+z2

C = w2
D+z2

D = 1 , wC z̄C = w̄CzC , wDz̄D = w̄DzD}

It is straightforward now to check that this agrees point-wise with the expression of

VL1 ◦ V̄L2 calculated in Step 5 :

VL1◦V̄L2 = {(wD, zD, wC , zC) : w2
C+z2

C = w2
D+z2

D = wCw̄C+zC z̄C = wDw̄D+zDz̄D = 1}

Therefore, we conclude that VL1 ◦ V̄L2 = L1×L2 for the almost complex structures j

on Σ sufficiently stretched along L1 and L2 and the Kähler form on Sym2(Σ) which is

the restriction of ΩN to the fibre of r∗F over (1, 1). For any other nearly symmetric

form on Sym2(Σ) in the same cohomology class as the restriction of ΩN , one applies

Moser’s lemma to obtain a connecting symplectomorphism and by carefully choosing

the Moser primitives such that the flux of the resulting Lagrangian isotopy is zero,

one obtains Hamiltonian isotopic VL1 ◦ V̄L2 and L1×L2. It is here that the hypothesis

of nearly symmetric forms is essential so that the resulting Lagrangian obtained by

flowing L1×L2 is the product of the images of L1 and L2 under the flow separately.

This completes the proof.

Corollary B.0.7. Let (Σ, j) be a Riemann surface and L1, . . . , Lk embedded disjoint

curves on Σ. Let σ be an element of the permutation group of a finite set with k

elements. Then,

VL1 ◦VL2 ◦ . . . VLk and VLσ(1)
◦VLσ(2)

. . . VLσ(k)
are Hamiltonian isotopic in Symn(Σ)×

Symn−k(ΣL1L2...Lk) for −ω ⊕ ω12...k, where ω and ω12...k are Kähler forms lying in

cohomology classes ([ω], [ω12...k]) = (sηΣ + tθΣ, sηΣL1L2...Lk
+ tθΣL1L2...Lk

) for s, t > 0.
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Furthermore, for n = k, if ω is nearly symmetric for a complex structure j on Σ

sufficiently stretched along L1, . . . Lk , then VL1 ◦VL2 ◦ . . . VLk is Hamiltonian isotopic

to L1 × L2 × . . .× Lk in (Symk(Σ), ω).

Proof. The proof follows exactly the same steps as in the case of k = 2 when one

considers the degenerations over D2 × . . . × D2 (k times). At the end of each step

in the proof of Theorem B.0.4, we indicated how the proof generalizes to this case.
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