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1 Introduction

Recollections from point-set topology:

A topology on a set is a way of measuring nearness of points. Recall that a topological space is
a set with a preferred collection of subsets, the open sets, such that arbitrary unions of opens
sets are open, finite intersections of open sets are open, and ∅, X are open. This gives a notion
of closeness without requiring a notion of distance - points are close if they tend to be in the
same open sets.

It suffices to think of metric spaces, where there is a distance function

d : X ×X → R

and open sets are generated by the basis Uε(x) = {y : d(x, y) < ε} This means that any open set
is a union of these basic open sets.

Recall that a continuous map f : X → Y between topological spaces is a map such that f−1(U)
is open for all open sets U of Y . Intuitively, this means that nearby points are mapped to nearby
points under f with the precision of the word “nearby” is dictated by the topologies on X and
Y .

When sets X and Y are equipped with topologies, any map between them will be assumed
to be continuous by convention. We denote the set of continuous maps between X and Y by
C0(X,Y ). This set carries a natural topology, called compact-open topology, which is generated
by the basis of open sets:

U(K,U) =: {f ∈ C0(X,Y )|f(K) ⊂ U}

where K is a compact set in X and U open in Y .

A homeomorphism is a continuous map f : X → Y with a continuous inverse g : Y → X,
that is, g ◦ f = IdX , f ◦ g = IdY . In topology, one considers homeomorphic topological spaces
equivalent. Classical topology asks:

Given two topological spaces X and Y , can you decide whether X and Y are homeomor-
phic?
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Key definition of algebraic topology: Homotopy equivalence

In algebraic topology, a weaker notion of equivalence is used. Namely, one asks given two
topological spaces X and Y , can you decide whether they are homotopy equivalent?
Definition 1.1. Let f, g : X → Y are continuous maps. We say that f and g are homotopic
and write f ∼ g whenever there exists a family of maps:

Ht : X → Y for t ∈ [0, 1]

such that:

H0 = f and H1 = g,

H : X × [0, 1]→ Y given by H(x, t) = Ht(x) is continuous.

This is a formal way of saying that f can be continuously deformed into g. The relation of
homotopy is a relation of equivalence (Check!).

We use the notation [X,Y ] for the homotopy classes of maps from X → Y .
Definition 1.2. Two spaces X and Y are homotopy equivalent, written X ∼ Y , if there exists
a map f : X → Y with an inverse up to homotopy, g : Y → X, that is, g ◦f ∼ IdX , f ◦g ∼ IdY .

It is easy to show that homotopy equivalence is an equivalence relation in the usual. An equiv-
alence class of homotopy equivalent spaces is a homotopy type. One of the main themes of this
course is to construct and compute algebraic invariants of topological spaces that distinguish
their homotopy types.

In this course, we will deal with “reasonable” topological spaces. An important class of “rea-
sonable” topological spaces is furnished by manifolds.
Definition 1.3. A (topological) manifold is a Hausdorff topological space locally homeomorphic
to Rn for some fixed n, the dimension of the manifold.

For example, the torus or two-holed torus are 2-manifolds, but the double cone or pinched
torus are not manifolds (since they have special points no neighbourhood of which looks like
Rn). Manifolds have been something of a 20th century obsession but they are also popular
because algebraic topology works well on them. Even though, the class of spaces that one cares
about in geometry is really manifolds or some singular generalizations of them, several natural
constructions in algebraic topology does not respect this class of spaces. For homotopy theory,
the most useful class of spaces, generalizing that of manifolds, is the class of CW complexes
defined as follows:
Definition 1.4. (Whitehead ’49) A CW-complex is a topological space X which is represented
as a disjoint union:

X =

∞⋃
p=0

⋃
i∈Ip

epi

of cells epi , if there exists a family of continuous mappings fpi : Dp → X (where Dp is the p-
dimensional closed ball) called the characteristic mapping of eqi , such that the restriction of fpi
to Int Dp is a homeomorphism Int Dp ' epi and fpi (∂Dp) is contained in the union of the cells
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of smaller dimensions : fpi (∂Dp) ⊂
⋃p−1
q=0

⋃
i∈Iq e

q
i . Furthermore, the following axioms have to

be satisfied:

(C) (closure finite) The closure of each cell meets only a finite number of cells;

(W) (weak topology) a subset U ⊂ X is open if and only if for each epi the preimage (fpi )−1(U) ⊂
Dp is open in Dp.

Note that the topology given by the axiom (W) is the weakest one among the topologies for
which the characteristic mappings are continuous.

A CW-complex X has a filtration by subcomplexes:

∅ = X−1 ⊂ X0 ⊂ X1 ⊂ . . . ⊂

where Xi =
⋃i
p=0

⋃
i∈Ip e

p
i is called the i-th skeleton.

Furthermore, Xn is obtained by attaching a bunch of n-cells to Xn−1, that is,

Xn = Xn−1 ∪(ti jni ) (ti Dn
i ) (1)

Here jni : ∂Dn
i → Xn−1, attaching maps, are the restrictions of fni to ∂Dn

i = Sn−1
i .

This viewpoint leads to another way to define a CW -complex. Namely, a CW -complex X is a
space which is a union of an expanding sequence of subspaces Xn such that, inductively, X0 is a
set of points equipped with discrete topology and Xn is the pushout as given in (1) by attaching
disks Dn

i along the attaching maps jni . Furthermore, the pushouts are given weak topology as
in the axiom (W).

The axiom (C) is automatic from this point of view by the following proposition:

Proposition 1.5. Suppose X is constructed inductively as a (possibly infinite) sequence of
pushouts, and given the weak topology as in (W). Then, a compact subspace of X intersects only
finite number of cells.

Proof. Let K be a compact subset of X. Suppose on the contrary that there exists an infinite
sequence of points xi in K which lie in different cells of X. The set S = {x1, x2, . . .} be the
union of these points. Assume by induction on n that S ∩Xn−1 is closed. Then for each n-cell
eni , we have that (fpi )−1(S) is closed in ∂Dp by induction hypothesis and (fpi )−1(S) has at most
1 more point. Hence, it is closed. Thus, S ∩ Xn is closed, and hence S is closed in X. Now,
the same argument shows that any subset of S is closed, hence the subspace topology on S is
the discrete topology. On the other hand, S is a closed subset of a compact set K, hence S is
compact. It follows that S must be finite - a contradiction.
Remark 1.6. When one builds a topological space as a CW complex, it is useful to use the
inductive definition via pushouts. On the other hand, if one has been provided with an ambient
topological space and is asked to put a CW complex structure compatible with the given topology,
the first definition is often more practical.
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Examples:

- A graph is just a CW complex of dimension ≤ 1.

- The n-dimensional sphere Sn may be represented as a union e0 ∪ en, a point in Sn and its
complement en = Sn\e0.

- The Hawaiian earring, i.e. the union X =
⋃
n≥1Cn of circles Cn in R2 of radius 1/n centered

at (1/n, 0), is naturally a CW -complex, but the topology inherited from R2 does not make it
a CW complex. The set U =

⋃
C2n\{0} is open in the weak topology but not the subspace

topology.

- The real projective space RPn of dimension n can be given as a CW-complex. The filtration
is

RP 0 ⊂ RP 1 ⊂ RP 2 ⊂ . . . ⊂ RPn

RPn is obtained from RPn−1 by attaching the upper hemisphere and glueing the boundary to
RPn−1.

- Similarly, complex projective space CPn = (Cn+1\{0})/C× is a cell complex with cells:

e0 ∪ e2 ∪ · · · ∪ e2n

Let us work out this example more carefully. Define

X2k = {[z0, . . . , zn] ∈ CPn : zj = 0 for all j > k}

Thus X0 ⊂ X2 ⊂ . . . ⊂ X = CPn , and X2k = CP k . We will exhibit X2k as the 2k-skeleton
of a cell decomposition. If [z] ∈ X2k\X2(k−1) ⊂ CPn then zk+1 = . . . = zn = 0 but zk 6= 0,
so [z] = [w1, . . . , wk−1, 1, 0 . . . , 0] for a unique (w0, . . . , wk−1) ∈ Ck. Thus X2k\X2(k−1) ' Ck .
Thus CPn is a disjoint union of open cells, one of each even dimension up to 2n. To see that
they are attached in the proper way, think of D2k as {w = (w0, . . . , wk−1) ∈ Ck : |w| ≤ 1} and
define f2k : D2k → X2k as follows:

f2k(w) = (w0, . . . , wk−1, (1− |w|2)1/2, 0, . . . , 0)

This map extends to a homeomorphism D2k ∪f2k X2k−2 → X2k which restricts to the inclusion
on X2k−2 , where f2k : S2k−1 → X2k−2 is given by f2k(ξ0, . . . , ξk) = [ξ0, . . . , ξk, 0, . . . , 0].
Remark 1.7. One can always equip a smooth manifold X with a CW structure. (cf. Morse
theory). In dimension > 4, every topological manifold can also be given a CW structure. As far
as I know, the question of whether every topological 4-manifold admits a CW -structure is open.
(Note that for n < 4 topological and smooth manifolds are all the same.)
Remark 1.8. In a certain precise sense, CW complexes capture all there is to capture about
homotopy types of topological spaces. A poor man’s statement of this fact is that any topological
space is weakly equivalent to a CW complex, and any weak equivalence between CW complexes
is a homotopy equivalence. (A weak equivalence is a map which induces isomorphisms on all
homotopy groups, see below.) More sophisticated statements of this sort can be found in Chapter
10 of Weibel’s Introduction to homological algebra.
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2 Fundamental groupoid

Definition 2.1. A topological space X is contractible if it is homotopy equivalent to a point.

Convex subsets of Rn are contractible but S1 is not. An easy way to see the latter fact is via
studying the fundamental group of the circle. In this section, we will construct an invariant of
a (pointed) topological space, namely its fundamental group, that is sensitive to its homotopy
type.

Since many of you have seen the construction of the fundamental group already, I will take a
somewhat more advanced point of view and define the fundamental groupoid.

Recall that a category C consists of a collection objects: x, y, z . . . and a set of morphisms
Mor(x, y) between any objects x and y. Furthermore, there is a composition law:

Mor(y, z)×Mor(x, y)→Mor(x, z)

that is associative. In addition, each set Mor(x, x) must contain an identity element ex.

For example, T of topological spaces is a category, where objects X,Y, . . . are topological spaces
and morphisms Mor(X,Y ) are continuous mappings from X to Y . Another category of interest
is hT , where the objects are topological spaces as before, but the morphisms are homotopy
classes of maps.

A groupoid is a category where every morphism f ∈ Mor(x, y) has a two-sided inverse g ∈
Mor(y, x), i.e. f · g = cy and g · f = cx. Note that it follows in particular that for each object
x of a groupoid, the endomorphisms of the object x, that is, Mor(x, x) is a group.

Given a topological space X, we would like to construct the fundamental groupoid Π(X). Here
is a first try:

Let C be a ‘category’ whose objects are the points x ∈ X, and the morphisms between the objects
x and y be the space of continuous paths f : [0, 1] → X such that f(0) = x and f(1) = y. We
can define a composition via concatenation of paths:

(g · f)(t) =

{
f(2t) 0 ≤ t ≤ 1/2

g(2t− 1) 1/2 ≤ t ≤ 1
(2)

The constants paths cx give identity elements. However, in general, we have

(f · g) · h 6= f · (g · h)

That is, associativity of the composition fails. Luckily, this is easy to remedy, if we relax the
notion of equivalence in our morphism spaces. Let us, finally, define the category Π(X) where
the morphisms Mor(x, y) are the equivalence classes of continuous maps f : [0, 1] → X with
f(0) = x and f(1) = y under the relation of homotopy rel end points. (Two maps f0 and f1

with end points x and y are said to be homotopic rel end points if there is a homotopy ft with
ft(0) = x and ft(1) = y for all t). We will denote the equivalence class of a map f : [0, 1]→ X
by [f ].
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Proposition 2.2. The composition of morphisms given by [g] · [f ] = [g · f ] for [f ] ∈Mor(x, y),
[g] ∈Mor(y, z) is well-defined and is associative. The constant paths [cx] ∈Mor(x, x) are iden-
tity elements. Furthermore, every morphism [f ] ∈Mor(x, y) has an inverse [f−1] ∈Mor(y, x),
defined by f−1(t) = f(1− t), and these satisfy [f−1][f ] = [cx] and [f ][f−1] = [cy]

Proof. These can all be proven by picturing the domain of the required homotopies.

Definition 2.3. The groupoid just defined, denoted by Π(X) is called the fundamental groupoid.
If x ∈ X is an object of Π(X), then Mor(x, x) =: π1(X,x) is called the fundamental group of
X based at x.

Dependence on the basepoint: Let h be a path connecting x to y. Define βh : π1(X,x)→ π1(X, y)
via

[f ]→ [h] · [f ] · [h−1]

It is easy to check that βh is a homomorphism with inverse βh−1 . Hence, it is an isomorphism.
This isomorphism depends on the choice of the path h. By changing h to another path that is
not homotopic to h, we usually get different isomorphisms. To understand this, suppose k is a
path connecting y to x, we see that

βk·h([f ]) = βk · βh([f ]) = [k · h][f ][(k · h)−1]

Thus, in general, the isomorphisms if h and h′ are two paths connecting x to y βh and βh′ differ
by conjugation by (h′)−1h. So, the isomorphisms of π1(X,x) and π1(X, y) would be canonical
if the fundamental group is abelian.

More generally, we can take A ⊂ X to be any subset in X, and consider the full sub-groupoid
Π(X,A) of Π(X). The objects of Π(X,A) are the points x ∈ A and the morphisms Mor(a, b)
for a, b ∈ A are homotopy classes of paths in X connecting a and b (rel end points).

Homotopy invariance: A functor F : C → D between two categories assigns an object F (X) of
D for each object X of C and a morphism F (f) : F (X)→ F (Y ) for each morphism f : X → Y .
As usual, this should respect the composition F (g ◦f) = F (g)◦F (f) and it should send identity
elements to identity elements : F (idX) = idF (X).

The construction X → Π(X) is a functor from the category of topological spaces to the category
of groupoids. We write this as:

Π : T → G P

To see this note that we have already constructed this functor on each object T by sending
X to its fundamental groupoid Π(X). Now, if we have a morphism p : X → Y , that is, a
continuous function, we need to construct a morphism of groupoids Π(p) : Π(X)→ Π(Y ). This
is straightforward: For each object x of Π(X), a point in X, we let Π(p)(x) = p(x) ∈ Y to
be the point under the image of p and for each morphism f ∈ Mor(x1, x2), that is, a path
f : [0, 1]→ X connecting x1 to x2, we send it to the path p(f) : [0, 1]→ Y connecting p(y1) to
p(y2). It is easily checked that if f ∼ g then p(f) ∼ p(g).
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Corollary 2.4. If X is homeomorphic to Y then Π(X) is isomorphic to Π(Y ).

Thus, the fundamental groupoid Π(X) is an invariant of a topological space. Next, we would
like to understand the behaviour of this invariant under homotopy equivalences.To understand
this, we need to define a notion of “homotopy equivalence” of groupoids. (Believe me, this is
not as abstract as it sounds).

To define a homotopy of functors between two categories C and D , we need a category corre-
sponding to the unit interval. Let I be the groupoid consisting of two objects: 0 and 1 , and a
single morphism t ∈Mor(0, 1) and its inverse t−1 ∈Mor(1, 0). A homotopy of functors from C
to D is a functor:

F : C ×I → D

Let us unwind this a little bit: We have two functors

f = F ( , 0) : C → D ,

g = F ( , 1) : C → D

Furthermore, for each object x of C , we have the invertible elements θx = F (x, t) ∈Mor(f(x), g(x))
such that the following diagram has to commute for all x, y and a ∈Mor(x, y):

f(x)
f(a)

//

θx
��

f(y)

θy
��

g(x)
g(a)

// g(y)

(3)

The map θ : f → g is also called a natural isomorphism in category theory. Having defined
what it means to be a homotopy between functors. We can define, as before, two categories C
and D are homotopy equivalent, if there exists functors f : C → D and g : D → C such that
:

g ◦ f ∼ idC and f ◦ g ∼ idD

Now, we are ready to state the behaviour of the fundamental groupoid under homotopy equiv-
alences of spaces:
Proposition 2.5. Suppose p : X → Y is a homotopy equivalence of spaces, then Π(p) : Π(X)→
Π(Y ) is a homotopy equivalence of groupoids.

The proof of this proposition is immediate from the following:

Lemma 2.6. Let f, g : X → Y be homotopic maps of topological spaces, then Π(f),Π(g) :
Π(X)→ Π(Y ) are homotopic functors.
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Proof. Let F : X × I → Y be a homotopy from f to g. We need to construct a functor
ΠX×I → ΠY . As explained above, this in turn corresponds to giving invertible elements:

θx ∈Mor(f(x), g(x))

which satisfy the commutativity enforced by the diagrams (3). The complication is only in
the notation. Namely, we just let θx to be defined by the homotopy class of the obvious path:
θx : [0, 1]→ Y given by

θx(t) = [F (x, t)]

This is a path that connects the point f(x) = F (x, 0) to g(x) = F (x, 1).

To check the commutativity, it suffices to show that, for a path a : [0, 1]→ X connecting x to y,
g(a)◦θx is homotopic to θy ◦f(a) as paths from f(x) to f(y). This homotopy is provided by the
map H : I × I → Y given by pre-composing the map (s, t)→ F (a(s), t) by a reparametrization
R : I × I → I × I as in the following figure:

A more succinct way of constructing the homotopy between the functors Π(f) and Π(g) is
obtained by the following composition of functors:

ΠX ×I → ΠX ×ΠI → Π(X × I)→ ΠY,

where the first arrow is induced by the inclusion functor from I → ΠI, the second arrow is
given via the inverse of the isomorphism Π(X× I) ∼= ΠX×ΠI induced by projections to factors
and the last arrow is given by ΠF : Π(X × I)→ ΠY .

In particular, if p : X → Y and q : Y → X are homotopy inverses, i.e. q◦p ∼ idX and p◦q ∼ idY
then the functors f = Π(p) and g = Π(q) are homotopy inverses. An immediate corollary of
this is the following:

Corollary 2.7. Suppose p : X → Y is a homotopy equivalence, then Π(p) : Π(X) → Π(Y )
induces bijections Mor(x, y)→Mor(p(x), p(y)) for all x, y ∈ X.

Proof. Let f = Π(p) be the homotopy equivalence constructed above and g : Π(Y )→ Π(X) be
a homotopy inverse of f so that g ◦ f ∼ id and f ◦ g ∼ id. Consider the functions:

Mor(x, y)→Mor(fx, fy)→Mor(gfx, gfy)→Mor(fgfx, fgfy)

The composite of the first two and the last two are bijections. It follows that each function is a
bijection.

In particular, if x ∈ X, then Π(p) : π1(X,x) → π1(Y, p(x)) is an isomorphism of fundamental
groups.
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3 van Kampen theorems

3.1 Pushouts

Let C be a category. A diagram

C0 C1

C2 C

i1

i2

u2

u1

of morphisms of C is called a pushout of (i1, i2) if the diagram is commutative and u1 and u2

are universal with respect to this commutativity. This means that if there is another object C̃
and maps v1, v2 that completes the diagram to a commutative square, then there exists a unique
map v : C → C̃ such that v1 = v ◦ u1, v2 = v ◦ u2. One can express this as a commutative
diagram:

C0 C1

C2 C

C̃

i1

i2

u2

v2

u1

v1

v

Note that in an arbitrary category, given i1 : C0 → C1 and i2 : C0 → C2, an object C and
morphisms u1 : C1 → C and u2 : C2 → C fitting into a push-out diagram need not exist. On the
other hand, it is easy to show that arbitrary pushouts exist in the categories, T of topological
spaces, G of groups, G P of groupoids. As May puts it, the proof is a worthwhile exercise.

Examples:

- Let U and V be open subspaces of a topological space X such that X = U ∪ V . Then the
following is a push-out diagram in the category of topological spaces:

U ∩ V U

V X

where each of the maps are natural inclusion maps.

9



- The construction of n-skeleton of CW-complex from its n− 1-skeleton and the attaching maps
is an example of a push-out in the category of topological spaces. The pushout diagram for this
is as follows:

tiSn−1
i tiDn

i

Xn−1 Xn

jni fni

- In the category of groups, push-outs are also called amalgamated products. Suppose i1 : K → G
and i2 : K → H are group homomorphisms. Let N be the normal subgroup of the free product
G ∗ H generated by the elements of the form i1(k)i2(k)−1 for k ∈ K; then the amalgamated
product is:

G ∗K H := (G ∗H)/N

One can understand this via group presentations. Suppose that we are given presentations
G = 〈G|R〉 and H = 〈H|S〉. Then, the amalgamated product has a presentation:

G1 ∗H G2 = 〈G ∪ H|R ∪ S ∪ {i1(k)i2(k)−1|k ∈ K}〉

Note that the free product G∗H of groups is the push-out of the diagram G← {1} → H.

Here is a version of the van Kampen theorem (for groupoids):

Theorem 3.1. Let X = U1 ∪ U2 for some open sets U1 and U2 and let A ⊂ X of base points
such that A contains at least one point on each path-component of U1, U2 and U1 ∩ U2. Then
the following is a push-out in the category of groupoids:

Π(U1 ∩ U2, A) Π(U1, A)

Π(U2, A) Π(X,A)

i1

i2

u2

u1

Note that here by abuse of notation we write Π(U1, A) for Π(U1, A∩U1) and similarly for others.

Proof. First, we give the proof for A = X. We need to verify the universal property of push-
outs in the category of groupoids. So, let G be a groupoid such that one has a commutative
diagram:

Π(U1 ∩ U2) Π(U1)

Π(U2) G

i1

i2

v2

v1
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We need to show that there is a unique map v : Π(X) → G such that v1 = v ◦ u1 and
v2 = v ◦ u2.

Let x ∈ X be a point (equivalently an object of Π(X)). If x ∈ Ui, then define v(x) = ui(x).
Note that if x ∈ U1 ∩ U2 then we have u1(x) = u2(x) hence there is no ambiguity. Similarly,
if a path a ∈ Mor(x, y) lies entirely in Ui, then we must define v(a) = ui(a). Next, any path
f : [0, 1]→ X can be factorized as a composite :

f = f1 · f2 · . . . · fk,

for some k, such that the image of fi lies entirely in either U1 or U2. This is obtained by
subdividing the domain [0, 1] and using compactness. We can then define:

v([f ]) = v([f1]) · v([f2]) · . . . · v([fk])

where v([fi]) had already been defined. Indeed, this definition is forced on us by the required
restriction properties of the map. To conclude, we need to show that this specification is well-
defined. Let H : I × I → X be a homotopy from f to g. We may subdivide the square I × I to
subsquares so that each of the subsquares are mapped by H to either U1 or U2 (again by using
the compactness of the domain). Furthermore, by subdividing more if necessary we can ensure
that the subdivision in I ×{0} and I ×{1} refines the subdivisions used to define f and g. Now
the relation [f ] = [g] can be seen as a composite of finite number of relations each of which holds
in either Π(U) or Π(V ) hence we conclude that v(f) = v(g) as required (I will explain this last
part in more detail in class).

To prove the more general case for A 6= X, we need to again check the universal property of
the push-outs. Suppose, as before, that G is a groupoid which fits into a commutative diagram
with Π(U1 ∩ U2, A), Π(U1, A) and Π(U2, A).

We construct a retraction of r : Π(X)→ Π(X,A). Namely, since A meets every path-component
of U1 ∩ U2, for every y ∈ U1 ∩ U2 we can choose a path y → ry that connects y to a point in
ry ∈ A. Similarly, since A intersects every path component of Ui, for every x ∈ Ui\(U1 ∩ U2)
we can find an rx ∈ A such that there is a path in Ui connecting x → rx for i = 1, 2. We also
choose rx = x for x ∈ A. The key property that is needed for choosing these paths is that if a
path connects a point y in some U , where U is either U1 or U2 or U1 ∩U2 to some ry ∈ A, then
the entire path is contained in that U .

This key property ensures that we get compatible retraction functors (the solid diagonal arrows
are retractions) :
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Π(U1 ∩ U2) Π(U1)

Π(U1 ∩ U2, A) Π(U1, A)

Π(U2, A) G

Π(U2) Π(X)

The dashed arrow is the morphism Π(X) → G that is induced by the universal property of
the pushout for Π(X), that was proven in the first part. Now, composing with the inclusion
morphism:

Π(X,A)→ Π(X)→ G

we get the required morphism v : Π(X,A) → G . Finally, uniqueness of v follows from the
uniqueness of Π(X)→ G , which we proved before.

Remark 3.2. It is possible to generalize the argument to an arbitrary union: X =
⋃
α∈I Uα.

It suffices the generalize the condition on A as follows: A should contain at least one point on
each path-component of two-fold Uα ∩ Uβ or three-fold intersections Uα ∩ Uβ ∩ Uγ. For this
generalization, the push-outs should also be replaced by coequalizers of the maps induced from
the inclusions Uα → X. Note that we do not need to assume that any of these intersections are
path-connected for groupoid version of van-Kampen’s theorem. (May assumes this on page 17 of
his book and it is indeed unnecessary!). We won’t use this generalization in this course.

When U , V and U ∩ V are path-connected, we can take A to be a single base-point in U ∩ V ,
the above theorem then gives the more familiar version of Seifert-van Kampen theorem for fun-
damental groups:

Corollary 3.3. Let X = U ∪ V , and suppose U , V and U ∩ V are path-connected. Let ∗ be a
base-point in U ∩ V , then the following is a push-out in the category of groups:

π1(U ∩ V, ∗) π1(U, ∗)

π1(V, ∗) π1(X, ∗)

In particular, it follows that π1(X, ∗) is isomorphic to an amalgamated product of π1(U, ∗) and
π1(V, ∗).

12



We give a couple of example applications of van Kampen theorem:

Corollary 3.4. Let X = X1 ∨X2 be a wedge of path-connected based spaces (Xi, pi) such that
for each i, pi has a neighborhood in Xi that is contractible. Then π1(X) is isomorphic to a free
product π1(X1, p1) ∗ π1(X2, p2).

Proof. Let Vi be contractible neighborhoods of pi in Xi. Take U1 = X1 ∪ V2 and U2 = X2 ∪ V2

and apply the van-Kampen theorem.

Proposition 3.5. Let X = U ∪ V where U , V and U ∩ V are path connected and π1(V ) = 0.
Then, π1(X, ∗) is isomorphic to π1(U, ∗)/N where N is the smallest normal subgroup of π1(U, ∗)
that contains the image of π1(U ∩ V, ∗)→ π1(U, ∗).

This is just a restatement of van Kampen’s theorem with an extra assumption on V . As a
corollary, this allows us to compute the fundamental group of any finite CW complex from its
2-skeleton.
Corollary 3.6. Let X be a (finite) connected CW -complex, then π1(X, ∗) ' π1(X2, ∗) '
π1(X1, ∗)/N where N is the normal subgroup of π1(X1, ∗) determined by the attaching maps
j2
i : ∂D2

i → X1.

If we had proven van Kampen theorem in full generality, we would be able to remove the
finiteness assumption above.

We will next compute the fundamental group of a circle. In view of the last corollaries, we obtain
an algorithmic way of computing the fundamental group of all (finite) CW complexes.

4 Covering spaces

4.1 π1(S1, ∗) = Z

A computation of π1(S1, ∗) is given in the second set of homework problems based on groupoid
version of van Kampen’s theorem (the key ingredient there is to be able to use several base
points). Here, we will give the more standard version based on a covering argument.

Warning: In this section, we will assume that all the spaces are connected and locally path-
connected. I will try to specify these but the reader has been warned that these hypothesis may
have been omitted.

Definition 4.1. Let E and B be connected and locally path-connected spaces. A map p : E → B
is a covering if it is surjective and if each point b ∈ B has an open neighborhood U such that
if p−1(U) = ti∈IUi is a decomposition to the connected components of p−1(U), the restriction
p|Ui : Ui → U is a homeomorphisms for each i ∈ I. E is called the total space and B is called
the base space of the covering. We also write Fb = p−1(b) for the fiber of the covering at b.

13



Note that by connectedness the cardinality of points in Fb remains constant as b varies. This
cardinality is called the number of sheets of the covering.

Examples:

The projection p : R → S1 given by p(s) = e2πis is a covering. Similarly, each pn : S1 → S1

sending e2πis → e2πins is a covering. The projection p : Sn → RPn obtained by identifying
antipodal points is a covering.

Theorem 4.2. π1(S1, ∗) = Z

The proof will be obtained by studying the covering map p : R→ S1 given by p(s) = e2πis. The
next proposition shows that the homotopy lifting property holds for covering maps p : E → B.

Proposition 4.3. Let S be any locally path-connected topological space. Let p : E → B be a
covering. Given a homotopy ft : S → B and a lift f̃0 : S → E, that is a map that satisfies
f̃0 = p ◦ f0, then there exists a unique homotopy f̃t : S → E of f̃0 that lifts ft.

Proof. By definition of a covering space, we can cover B with a collection of open sets Uα such
that p−1(Uα) = ti∈IαUα,i such that p|Uα,i : Uα,i → Uα is a homeomorphism.

Let us write F : S× I → B for the homotopy ft and we are seeking to lift this to F̃ : S× I → E
where F̃|S×{0} is already specified to be f̃0.

Given a point s ∈ S, let us first construct a lift F̃ : N × I → E in a neighborhood N of {s}.
Since I is compact, we can find a subdivision of I to Ii = [tk, tk+1] for 0 = t0 < t1 < . . . < tn = 1
and a neighborhood N of {s} in S such that for each i there exists a Uα such that F (N × Ik)
lies entirely in some Uα. Assume inductively that we have defined a lift F̃ at N × {tk}. Now,
in the preimage p−1(Uα) we also get a distinguished open set Uα,ik which contains F (s, tk). By
shrinking N if necessary, we can assume that F̃ (N×{tk}) ⊂ Uα,ik . We can then extend, F̃ to all
of N×[tk, tk+1] by composing F : N×[tk, tk+1]→ B with the homeomorphism p−1 : Uα → Uα,ik .
Thus by, induction we get a lift F̃ : Ns × I → E in a neighborhood of every point s ∈ S.

We note that we did not have any choice in constructing the lift. Therefore, for different Ns

and Ns′ the lifts F̃ : Ns × I → E and F̃ : Ns′ × I → E have to agree as they agree at
(Ns ∩Ns′)×{0} by construction. Hence, all these lifts assemble together to give the desired lift
F̃ : S × I → E.

In homotopy theory, surjective maps p : E → B between two topological spaces E and B
for which the homotopy lifting property holds without the uniqueness condition on the lift F̃ is
called a fibration. The previous proposition shows that covering maps are examples of fibrations.
The fibration property can be expressed by the following diagram:

S E

S × I B

f̃0

i0

F

F̃
p
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By taking S to a point or [0, 1], we get the following important special cases:

Corollary 4.4. Let p : E → B be a covering and b ∈ B and b̃ ∈ Fb.

1. A path f : [0, 1]→ B with f(0) = b lifts uniquely to a path f̃ : [0, 1]→ E such that f̃(0) = b̃
and p ◦ f̃ = f .

2. For each homotopy ft : [0, 1] → B of paths starting at b there is a unique lifted homotopy
f̃t : [0, 1]→ E of paths starting at b̃.

Let p : E → B a covering with p(e) = b as before. The homotopy lifting property implies the
following properties of the functor Π(p) : Π(E)→ Π(B).

Proposition 4.5. i) Π(p) : Mor(x, y)→Mor(p(x), p(y)) for x, y ∈ B is injective.
ii) Let e′ ∈ E be another point such that p(e′) = b, then Π(p)(π1(E, e′)) is conjugate to
Π(p)(π1(E, e)) and all conjugates are obtained this way.

The proof of this proposition is immediate from homotopy lifting property. We now turn to the
computation of fundamental group of the circle:

Proof of Theorem 4.2 We denote by p : R→ S1 the covering given by p(s) = e2πis. We will use
the basepoint 1 ∈ S1.

Let fn : [0, 1]→ S1 be loop defined by fn(s) = e2πis. It is easy to check that [fm] · [fn] = [fm+n]
hence we get a group homomorphism: i : Z → π1(S1, 1) by sending i(n) = [fn]. We will show
that this is an isomorphism.

Let f̃n : [0, 1]→ R be the lift of fn given by f̃n = ns so that fn = p(f̃n).

Now, suppose f : [0, 1] → S1 be an arbitrary loop with f(0) = f(1) = 1. By the previous
corollary, we can lift this uniquely to f̃ : [0, 1]→ R such that f̃(0) = 0 and it is necessarily true
that f̃(1) = m for some integer m ∈ Z. But now f̃ t + (1 − t)f̃m is a homotopy between these
paths rel endpoints hence by composing with p : R→ S1, we get a homotopy between f and fm
hence, [f ] = [fm]. This proves surjectivity.

To prove injectivity, suppose f : [0, 1] → S1 and g : [0, 1] → S1 are homotopic rel end point
points. Then, as before, we can lift them uniquely to R, and we need to show that f̃(1) =
g̃(1). But, if H is homotopy between f and g, by the homotopy lifting property it lifts to
H̃ : [0, 1] × [0, 1] → R. Since the preimage of H(1, t) = f(1) = g(1) is the discrete set Z in R,
the lift H̃(1, t) has to be constant. It follows that f̃(1) = g̃(1) as required.

Digression : Amusing applications.

Theorem 4.6. (Fundamental theorem of algebra) A polynomial

f(x) = xn + an−1x
n−1 + . . .+ a1x+ a0 ∈ C[x]

has a complex root.
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Proof. Look at the homotopy f(tx)/|f(tx)| from f(x)/|f(x)| to constant if f doesn’t have a zero
in |x| ≤ 1. On the other hand,

tnf(x/t)/|tnf(x/t)|

is a homotopy from f(x)/|f(x)| to xn/|xn| if f doesn’t have zero in |x| ≥ 1.

Theorem 4.7. (Borsuk-Ulam) For very continuous map f : S2 → R2, there exists a point
x ∈ S2 such that f(x) = f(−x).

Proof. Suppose, by contradiction, that f(x) 6= f(−x) for any x ∈ S2. Consider the map
F : S2 → S1 defined by

F (x) =
f(x)− f(−x)

|f(x)− f(−x)|
This is well-defined and continuous by our assumption. It satisfies the property of being an
odd function. That is, F (−x) = −F (x). Restricting F to an equator S1 ⊂ S2. We get a map
g = F|S1 : S1 → S1. This is null-homotopic because it extends to a map from F|D2 : D2 → S1.
Viewing g : [0, 1]→ S1 as a map from [0, 1] with g(0) = g(1), we can lift it uniquely to g̃ : I → R
with g̃(0) = 0, such that g = p ◦ g̃ where p : R → S1 is the covering map as above. Since g is
null-homotopic, we conclude that g̃(1) = g̃(0) = 0.

On the other hand, since g is an odd map, we have g(s+ 1/2) = −g(s) for s ∈ [0, 1/2]. Hence,
for all s ∈ [0, 1/2], there exists an integer m such that g̃(s+ 1/2) = g̃(s) +m+ 1/2. Note that m
does not depend on s, since g̃(s+1/2)− g̃(s)−1/2 is a continuous function on [0, 1/2] with values
in Z, hence it has to be the constant function. By evaluating at s = 0 and s = 1/2, we conclude
that g̃(1)−g̃(0) = 2m+1 is a non-zero integer. This gives us the desired contradiction.

4.2 Fundamental lifting theorem

We have seen that homotopies ft lift from the base of a covering space to its total space as soon
as we have a lift of f0. Therefore, it is important to understand when can lift just a map f = f0.
May, understandably, calls the following the fundamental theorem of covering theory:

Proposition 4.8. Let p : E → B be a covering. Let f : S → B be a continuous map from a
path-connected and locally path-connected space. Let s ∈ S and b ∈ B and e ∈ E be basepoints
so that f(s) = b = p(e). Then there exists a lift f̃ : S → E with f(s) = e if and only if

Π(f)(π1(S, s)) ⊂ Π(p)(π1(E, e))

in π1(B, b). Furthermore, if a lift exists, then it is unique.

Proof. If a lift exists, then, by definition, p◦ f̃ = f . Applying the fundamental groupoid functor,
we get Π(p) ◦Π(f̃) = Π(f) hence, Π(f)(π1(S, s)) ⊂ Π(p)(π1(E, e)).

Conversely, let x be any point of S. Choose a path g : [0, 1] → S such that g(0) = s and
g(1) = x. Consider the path f ◦ g : [0, 1] → B. By the homotopy lifting property, this path
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lifts to f̃ ◦ g : [0, 1]→ E at e. Note that if a lift f̃ exists, by the uniqueness of homotopy lifting

property, it must be that f̃ ◦ g = f̃ ◦ g. Hence, we are led to define

f̃(x) := f̃ ◦ g(1)

From this, we also conclude that if a lift exists, it is unique. We need to check that this definition
is independent of the choice of g and continuous. Any other path can be written as g · γ for
some γ ∈ π1(S, s). Therefor, f ◦ (g · γ) = (f ◦ g) · (f ◦ γ). But [f ◦ γ] ∈ Π(p)(π1(E, e)), hence by
the homotopy lifting property, there exists a loop β : [0, 1]→ E with β(0) = β(1) = e, such that

p(β) = f ◦γ. But then, f̃ ◦ g ·β is the unique lift of f ◦ (g ·γ) and we have f̃ ◦ g ·β(1) = f̃ ◦ g(1),
as desired. Thus f̃ : S → E is well-defined. Continuity of f̃ is an easy consequence of local
path-connectedness of S, which we skip.

The argument given in the proof also shows that:

Proposition 4.9. The index of the subgroup Π(p)(π1(E, e)) ⊂ π1(B, b) equals the cardinality of
p−1(b).

Proof. To see this, for any loop γ : [0, 1]→ B with γ(0) = γ(1) = b, consider its lift γ̃ : [0, 1]→ E
such that γ(0) = e. Now, consider the element in Fb = p−1(b) associated to γ̃(1). First of all,
γ̃(1) = e if and only if [γ] ∈ Π(p)(π1(E, e)). As, then γ̃ is a loop, hence [γ] = Π(p)[γ̃]. On the
other hand, since E is connected, we can choose an arc α : [0, 1]→ E with α(0) = e and α(1) is
any element in Fb. Then [p(α)] ∈ π1(B, b). Two such arcs α, β : [0, 1]→ E with α(0) = β(0) = e
give the same coset [p(α)] = [p(β)] ∈ π1(B, b)/Π(p)(π1(E, e)) if and only if they differ by a loop
hence this holds if and only if α(1) = β(1).

In particular, note that any two fibers Fb and Fb′ have the same cardinality.

We also obtain a transitive action of G = π1(B, b) on the fiber Fb, as the fiber Fb is identified
with a coset G/Gs where Gs = Π(π1(E, e)) is the stabilizer.

One can upgrade this to a functor:

Π(B)→ S

from the fundamental groupoid of B to the category of sets by sending an object x ∈ B to the
set Fx, and a morphism f ∈Mor(x, y) to a morphism of sets Tf : Fx → Fy by setting Tf (e) = e′

where e′ = f̃(1) for the unique lift f̃ of f at e.

4.3 Classification of Covering spaces

Definition 4.10. Let B be a path-connected and locally path-connected topological space. We
write Cov(B) for the category with objects coverings p : E → B with path-connected, locally
path-connected spaces E. A morphism between two coverings p1 : E1 → B and p2 : E2 → B is
f : E1 → E2 such that f ◦ p2 = p1.
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The morphisms in Cov(B) can be described by the following diagram:

E2

E1 B
p1

f
p2

Thus, constructing a morphism from E1 → E2 is the same thing is as constructing a lift of
p1 : E → B. The following is a direct consequence of the fundamental theorem of covering space
theory:

Corollary 4.11. Let p1 : E1 → B and p2 : E2 → B are covering maps with basepoints so that
p(e1) = b = p(e2). Then, there exists a homeomorphism h : E1 → E2 with p2 ◦ h = p1 and
h(e1) = e2 if and only if Π(p1)(π1(E1, e1)) = Π(p2)(π1(E2, e2)) in π1(B, b). Hence two coverings
of B are isomorphic if and only if they define conjugate subgroups of π1(B, b).

Note that from this and Proposition 4.5 ii) it follows easily that f : E1 → E2 is itself a covering
map.

Thus, any two simply connected coverings of B are isomorphic. A simply connected covering is
called universal covering. We shall see that under an additional mild hypothesis, semi-locally
simply connectedness, on B in addition to locally path-connectedness, there always exists a
universal covering. These conditions are satisfied, for example, when B is a CW -complex.

If p : E → B is an object of the category Cov(B), the automorphisms of this object are, written
as Aut(E/B), called deck transformations. Choose basepoint b ∈ B and e ∈ E, as before, such
that p(e) = b.

The following proposition, in particular, allows us to understand Aut(E/B) via restricting to
the fibre:

Proposition 4.12. Let p : E → B be a covering. Then Aut(E/B) is naturally isomorphic to
the group of automorphisms of Fb considered as a G-set, where G = π1(B, b).

Proof. Given a deck transformation f : E → E, we get an induced automorphism f|Fb : Fb → Fb
by restriction. It is easy to see that this is an automorphism as a G-set by unique lifting of
paths. Furthermore, viewing f : E → E as a lift of p : E → B, by uniqueness of lifts f is
completely determined by its restriction to the fiber. Let e ∈ E be a basepoint in Fb and H be
the subgroup Π(p)(π1(E, e)) of G = π1(B, b). To see that, any automorphism of Fb as a G-set
comes from a deck transformation, write Fb = G/H as coset of H ⊂ G. Now, any map from
G/H → G/H that is a G-map has to be of the form: gH → gmH for some m ∈ G, where
m ∈ G satisfies mH = Hm (check this!). In other words, G-maps from G/H → G/H, can be
identified with the Weyl group NH/H where NH is the normalizer of H in G. Let m̃ be a lift
at a point e′ of m ∈ π1(B, b) such that e = m̃(1). Then, we have

Π(p)(π1(E, e′)) = Π(p)(m̃−1π1(E, e)m̃) = m−1Hm = H = Π(p)(E, e)
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Hence, by the previous result there exists a homeomorphism of E → E sending e to e′.
Definition 4.13. We say that p : E → B is a normal (or regular or Galois) covering if
Π(p)(π1(E, e)) ⊂ π1(B, b) is a normal subgroup.

Exercise: Show that p : E → B is normal if and only if Aut(E/B) acts transitively on Fb, i.e.
for any e, e′ ∈ Fb, there exists an f ∈ Aut(E/B) such that f(e) = e′.

Now, to organize our thoughts a little bit, let’s review what we have. If p : E → B is a covering
space of locally path-connected, path-connected spaces with basepoints e, b such that p(e) = b,
then we get :

1) A subgroup H = Π(p)(π1(E, e)) ∈ π1(B, b) = G

2) A transitive G-set Fb which is identified with the cosets of G/H of H.

Given a group G, one can construct an orbit category O(G) whose objects are subgroups H ⊂ G.
An object gives the set G/H of left cosets which is a transitive G-set. Given two objects
H,K ⊂ G, one defines the morphisms Mor(H,K) to be the maps of G-set G/H → G/K.

The main theorem that we’ll prove in this section is:

Theorem 4.14. Suppose (B, b) is a based space with a universal cover p : U → B and a
basepoint u ∈ U with p(u) = b. Then there exists an equivalence of categories:

E : O(π1(B, b))→ Cov(B)

Proof. Let us write G = π1(B, b). By the previous proposition, we have the isomorphism
Aut(U/B) = G since Fb is isomorphic to G as a G-set. Therefore, subgroups of G can be
identified with subgroups of Aut(U/B). Define E(H) to be the orbit space U/H. This comes
with a projection map E(H) = U/H → U/G = B. Since U → U/G is a covering, it follows
easily that E(H) → B is a covering. The fiber of this covering over b is canonically identified
with G/H, and π1(E(H), [u]) maps to H under this covering map.

Next, if H,K ⊂ G are subgroups of G, we can generalize the argument given in the previous
proposition to see that Mor(E(H), E(K)) can be identified with maps of G-sets from G/H →
G/K. Namely, any such G-set map is of the from gH → gmK for some m with m−1Hm ⊂ K.
If pH : E(H)→ B and pK : E(K)→ K are the associated coverings with base points eH and eK
and let m̃ be the lift of m at a point e′H such that eH = m̃(1). Then we have:

Π(pH)(π1(E(H), e′H)) = m−1Hm ⊂ K = Π(pK)(π1(E(K), eK)

Hence, by the fundamental lifting theorem, there exists a unique lift of pH to a morphism in
Mor(E(H), E(K)) which sends the base point e′H to eK , hence sends eH → m · eK .

Thus, we have constructed the functor E . Both injectivity and essential surjectivity follows from
Corollary 4.11.
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4.4 Existence of universal covers

The last topic in our discussion of covering spaces will be about the existence of universal covers.
As before, we assume that our base spaces B are path-connected and locally path-connected.
It turns out that a sufficient and necessary condition for the existence of a universal cover is
semi-locally simply-connectedness of B. This means that B has a basis of topology such that
for each open set U of the basis the natural map π1(U)→ π1(X) is zero; this means that loops
in U can be contracted within X (but not necessarily in U). This condition is obviously implied
by locally contractible spaces such as CW -spaces.

Theorem 4.15. Let B be a path-connected, locally path-connected and semi-locally simply-
connected topological space, then B has a universal cover, that is, there exists a covering map
p : U → B from a simply connected topological space U .

Proof. Let b ∈ B be a basepoint. To motivate the construction of U , let us assume for a moment
that p : U → B is a universal cover. Since U is simply connected, for any point x ∈ U , there
exists a unique homotopy class of paths that start at u and end at x. This path, in turn, is a
unique lift of a path in B that starts in b. Motivated by this, we define U as a set by the set of
equivalence classes of paths f : [0, 1]→ B with f(0) = b, where the equivalence is as usual given
by a homotopy rel end points. We then have a projection p : U → B given by sending [f ] to
f(1). Next, we need to define a topology on U which makes it simply connected and such that
p : U → B is a covering map. Recall that by the assumption of semi-locally simply-connectedness
B has a basis of open sets such that for each member U of this basis π1(U)→ π1(B) is the zero
map. For each such U and a path f : [0, 1]→ B such that f(0) = b and f(1) ∈ U , we put

U([f ]) = {[g] : [g] = [c · f ] for some c : [0, 1]→ U}

It is easy to see that these form a basis of topology on U .

Note that since π1(U) → π1(B) is the zero map, for each point u ∈ U , there exists a unique
class [g] in each U([f ]) that maps to u. Furthermore, if we choose a basepoint u ∈ U , the
preimage

p−1(U) =
⊔

[f ]∈Mor(b,u)

U([f ])

Therefore, p : U → B is a covering map. Finally, we need to see that U is simply connected.
Let e = [cb] be the constant path at b, taken as a basepoint of U . Given any path f : [0, 1]→ B
starting at b, we can construct its lift to U at e as f̃ : [0, 1] → U by defining f̃(s) = [fs] where
fs : [0, 1] → B is the path fs(t) = f(st). f̃ is clearly continuous and is the unique lift of f .
It sends the basepoint e to [f ]. Hence, fixes the base point only if f is null-homotopic. This
means that the action of π1(B, b) is free on the fibre Fb = p−1(b), which is equivalent to the
simply-connectedness of U .

Note that as we have seen in the previous section, when it exists, universal cover is unique up
to isomorphism.
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4.5 A brief interlude: higher homotopy groups

Let (X,x) be a based space. We can express

π1(X,x) = [S1, X]

where [A,B], for A and B be (based) spaces, stands for (based) homotopy classes of (based)
maps.

There are natural generalization of this construction to all n ≥ 0 defined by

πn(X,x) = [Sn, X]

where Sn is the based n-sphere. These are called homotopy groups of X. Note that for n = 0,
π0(X) is simply the set of path components of X. For n ≥ 1, the homotopy groups are indeed
groups and for n ≥ 2 they are abelian groups. (The latter is the first easy fact that one learns
about higher homotopy groups, see Hatcher Section 4.1).

These groups are easy to define but notoriously difficult to compute for n ≥ 2. Even πn(S2) is
not known for all n. Here is a short list of the first few that we know:

π1(S2) = 0, π2(S2) = Z, π3(S2) = Z, π4(S2) = Z2, π5(S2) = Z2, π6(S2) = Z12, . . .

It is absolutely despicable that we don’t know these groups for all n.

We probably won’t have time to cover higher homotopy groups in more depth in this course
but it is indeed a fascinating topic. Just like the fundamental group, these higher groups are
functorially associated to topological spaces. One of the key definitions that goes with is the
following:
Definition 4.16. A map f : X → Y is said to be a weak-equivalence if for all x, the induced
maps:

πn(f) : πn(X,x)→ πn(Y, f(x))

are isomorphisms for all n ≥ 0.

This definition is important in view of Whitehead’s theorem that states that a weak-equivalence
between CW -complexes is a homotopy equivalence. Proof of Whitehead’s theorem is not too
hard but it uses some more familiarity with the basics of homotopy groups and notably the
cellular approximation theorem.

In this interlude, we will content ourselves with the following relation to covering spaces:
Proposition 4.17. Let p : E → B be a covering, then p induces isomorphisms

πn(E)→ πn(B)

for all n ≥ 2.

Proof. Since Sn is simply connected for n ≥ 2. Any map from Sn → B lifts by the fundamental
lifting theorem. This implies surjectivity. Injectivity is a direct consequence of homotopy lifting
theorem.

21



5 Homology

Homology groups are basic computable invariants of spaces. Unlike homotopy groups these are
stable invariants which is what makes them computable.

We associate invariants to topological spaces in two steps: first we map the space X to a
chain complex, then we take the homology of this complex. In professional life, one should
never do the second step but amateurs do, and we tolerate them.

5.1 Algebraic preliminaries:

Let R be commutative ring (for example R = Z). Let mod-R be the category of R-modules. An
object of this category is an R-module M and a morphism between two modules M and N , is
an R-module map.
Definition 5.1. A chain complex over R is a sequence of maps of R-modules

. . .→ Ci+1
di+1−−−→ Ci

di−→ Ci−1 −→ . . .

such that di ◦ di+1 = 0.

We will usually drop the indices on di and refer to all of them as d. One often writes C∗ to refer
to the direct sum ⊕iCi of R-modules with ith graded piece given by Ci.

An element of the kernel of di is called a cycle and an element of the image of di+1 is called a
boundary. The submodule of cycles in Ci are denoted by Zi(C) = ker(di) and the submodule of
boundaries in Ci are denoted by Bi(C) = im(di+1). The condition di ◦ di+1 = 0 guarantees that
Bi ⊂ Zi. The ith homology group is defined to be the quotient module:

Hi(C) = Zi(C)/Bi(C)

As before, we write H∗(C) for the direct sum ⊕iHi(C). We say that element of Zi(C) are
homologous if they differ by an element in Bi(C).

One can form a category Ch of chain complexes over R. A morphism between chain complexes
C∗ and C ′∗ is given by a chain map : f : C∗ → C ′∗. This is a sequence of maps fi : Ci → C ′i such
that the diagram below is commutative for all i:

Ci Ci−1

C ′i C ′i−1

fi

di

d′i

fi−1

That is, d′i ◦ fi = fi−1 ◦ di for all i.
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The latter relation implies that fi(ZiC) ⊂ (ZiC
′) and fi(BiC) ⊂ (BiC

′) hence we get induced
maps

Hi(fi) : Hi(C)→ Hi(C
′)

Hence, for each i ∈ N we have a homology functor:

Hi : Ch→ mod-R

So, one could aim to construct a functor

T → Ch

from category of topological spaces T to the category of chain complexes Ch and apply the
homology functors Hi to get invariants of topological spaces. Just like in the case of fundamental
groupoid, the correct source and target of our functor will be homotopy categories. That is,

hT → hCh

Recall that hT is the homotopy category of topological spaces, where the objects are topological
spaces and morphisms are homotopy equivalence classes of maps between topological spaces. To
define the notion of homotopy equivalence between chain complexes, we need to say what it
means to be two chain maps f, g : C∗ → C ′∗ to be homotopic. This is an algebraic version of
homotopy and is of key importance in homological algebra:

Definition 5.2. A chain homotopy s between chain maps f, g : C∗ → C ′∗ is a sequence of
R-module maps si : Ci → C ′i+1 for each i such that

d′i+1 ◦ si + si−1 ◦ di = fi − gi

It is easy to see that chain homotopy is an equivalence relation. The category hCh has objects
chain complexes and morphisms given by the equivalence classes of chain maps up to chain
homotopy.
Lemma 5.3. Chain homotopic maps f, g : C∗ → C ′∗ induce the same homomorphism on homol-
ogy.

Pf. Let s be tha chain homotopy, then for x ∈ Zi(C)

fi(x)− gi(x) = d′i+1si(x)

so that fi(x) and gi(x) are homologous.

5.2 Singular homology

In this section we construct an explicit functor from T → Ch and we will also see that this
descends to a functor from hT → hCh.
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Remark 5.4. : Note that Hatcher’s Chapter 1 begins with simplicial homology. We omit this,
because it is largely subsumed by cellular homology which we’ll see later on. On the other hand,
you may find it useful to read through Hatcher to develop your intuition.

Let X be a topological space (think a CW -complex). Intuitively, the resulting homology Hi(X)
will be i-dimensional pieces of X without boundary, and two generators will be equivalent if
they are the boundary components of an (i + 1)-dimensional piece. To make this precise and
fairly general, we would need to build our spaces out of lego. There is some freedom in choosing
the building blocks. We will use simplices (but you will see that cubes can also be used in a
homework problem).

Definition 5.5. An n−simplex ∆n is the subspace of Rn+1 given by

∆n = {(t0, t1, . . . , tn) : 0 ≤ ti ≤ 1,
∑

ti = 1}

These come with face maps:

δi : ∆n−1 → ∆n, 0 ≤ i ≤ n

given by

δi(t0, . . . , tn−1) = (t0, . . . , ti−1, 0, ti, . . . , tn−1)

which are homeomorphisms onto their images.

For a space X define the singular chain complex as follows: Let Cn(X;R) be the free R-module
generated by the set of continuous maps σ : ∆n → X, that is,

Cn(X;R) = {
k∑
i=1

aiσi : ai ∈ R, σi : ∆n → X}

Define the boundary map dn : Cn(X;R)→ Cn−1(X;R) via the formula:

dnσ =
n∑
i=0

(−1)i(σ ◦ δi)

(Have a look at the figure on page 105 of Hatcher to make sure that you understand the sign
and orientation conventions used in this formula.)

The signs in the summation are mysterious and will not be justified intuitively at this stage but
they play a vital role in the proof of the following:

Proposition 5.6. d2 = 0.

Proof. The face maps satisfy the equality δj ◦ δi = δi ◦ δj−1 for i < j. Using this, we have:

n−1∑
i=0

n∑
j=0

(−1)i+j(σ ◦ δj ◦ δi) =
∑
j≤i

(−1)i+j(σ ◦ δj ◦ δi) +
∑
i<j

(−1)i+j(σ ◦ δi ◦ δj−1) = 0
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(Set i′ = j − 1, j′ = i in the second sum to see the cancellation.)

Therefore, by passing to homology, we get an R-module Hn(X;R) for each topological space X
and n ≥ 0. One often writes Hn(X) when the reference to R is understood.

Note that if f : X → Y is continuous map, we get an induced map of chain complexes:

Si(f) : Ci(X;R)→ Ci(Y ;R)

by sending σ → f ◦ σ. The notation S(f) is often shortened to f∗. A moment’s reflection
leads to the obvious fact that diSi(f) = Si−1(f)di. Note also that we have S(id) = id and
S(g ◦ f) = S(g) ◦ S(f).

Hence, we indeed get a functor, called singular chain complex, :

S : T → Ch

In particular, if X and Y are homeomorphic, we have that their homology groups are isomor-
phic. We will soon see that singular chain complex functor induces a more desirable functor
hT → hCh, which will give us that homotopy equivalent spaces have isomorphic homology
groups.

However, first let us familiarize ourselves a little bit more with the singular chain complex.

5.3 First computations:

Proposition 5.7. H∗(pt) = R for ∗ = 0 and 0 otherwise.

Proof. In this case, the target space is so simple that we can write its chain complex explicitly
as:

· · ·R '−→ R
0−→ R

'−→ R
0−→ R→ 0

since every chain is of the from rσn where σn : ∆n → {pt} is the constant map to the point.
Furthermore, the differential d : Cn → Cn−1 is given by dσn =

∑
i(−1)iσn−1. Thus it is zero for

odd n and an isomorphism for even n.

Proposition 5.8. H0(X) is a free R-module on as many generators as there are path components
of X.

Proof It suffices to show that H0(X) = R for X path-connected since we have H∗(X) =
⊕i∈IH∗(Xi) if Xi are path-components of X. So, assume X is path-connected and define a
map:

ε : C0(X)→ R

given by
k∑
i=1

aiσi →
k∑
i=1

ai
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Firstly, observe that
ε(dσ) = ε(σ0 − σ1) = 1− 1 = 0

for any σ : ∆1 → X, where we used the notation σi = σ ◦ δi. Hence, ε descends to a map from
H0(X) → R. It is certainly surjective. Pick a point x0 ∈ X and observe that σ(rx0) = r. To
see injectivity, let

∑n
i=1 aixi be a 0-cycle in the kernel of ε. We want to show that it is also a

boundary. Choose paths from σi : [0, 1] → X such that σ(0) = xi and σ(1) = x0. Then, we
compute:

d

(
n∑
i=1

aiσi

)
=

n∑
i=1

ai(xi − x0) =

n∑
i=1

aixi

since
∑n

i=1 ai = 0.

The chain map ε : C0(X) → R is sometimes augmented to the singular chain complex to form
the reduced chain complex:

· · · → C2(X)
d2−→ C1(X)

d1−→ C0(X)
ε−→ R→ 0

This chain complex is denoted by C̃∗(X) and its homology H̃∗(X) is isomorphic to H∗(X) in
positive degrees. In contrast, H0(X) = H̃0(X)⊕R.

Next we study the relationship of H1(X) and the fundamental group.
Theorem 5.9. Let x0 ∈ X be a base-point. There is a homomorphism

h : π1(X,x0)→ H1(X;Z)

If X is path-connected, the kernel is the commutator subgroup, i.e., H1(X) is isomorphic to the
abelianization of π1(X).

Proof. Identifying ∆1 ' [0, 1]. We see that a loop f : [0, 1]→ X with f(0) = f(1) = x0 defines
a 1-chain, but, in fact, it is a cycle since

df = f(1)− f(0) = x0 − x0 = 0

So, we want to define h(f) = [f ] ∈ H1(X). We need to see that if f is homotopic to g we get
homologous cycles. Let F : [0, 1] × [0, 1] → X be a homotopy from f to g. We can subdivide
the domain of F into two triangles to get 2-simplices σ1, σ2 as in the figure: Let us also take a

2-simplex that is just the constant map to x0. Then we have :

dσ1 = x0 − γ + f
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dσ2 = γ − g + x0

dσ3 = x0

Hence,

d(σ1 + σ2 − 2σ3) = f − g

Thus homotopic paths lead to homologous cycles and we get a well-defined map from h :
π1(X,x0)→ H1(X).

This is a homomorphism. To see this, observe that for composable 1-simplices f, g : [0, 1]→ X,
one can construct a two simplex σ : ∆2 → X such that

dσ = g − (f · g) + f

(Proof easily follows by describing the picture of the domain or formally one can define σ = (f ·
g)◦p1 where p1 : ∆2 → ∆1 is the projection to a face given by (t0, t1, t2)→ (t0+ t2

2 , t1+ t2
2 )).

It remains to prove that this is surjective and the kernel is the commutator subgroup of π1(X,x0)
if X is path-connected. So, suppose now X is path-connected. For every point p ∈ X Choose a
path γp from x0 to p. Now, if σ =

∑
i aiσi is a 1-cycle, we have:

0 =
∑

ai(σi(1)− σi(0)) = dσ

This means that every point occurring in the sum occur even number of times with cancelling
signs. By replacing each point p with our chosen path γp, we see that the associated sum of
1-chains is also zero. Therefore, the 1-cycle∑

ai(γσi(1) + σi + γ−1
σi(0))

is equal to σ and this is homologous to the 1-cycle consisting of images of loops of the form
γσi(1) · σi · γ−1

σi(0). This proves surjectivity.

Finally, to compute the kernel of h. First observe that since H1(X) is abelian, and h is a group
homomorphism, it is obvious that the commutator subgroup [π1, π1] ⊂ ker(h).

To see the equality, let γ be a loop that is homologous to 0. This means that we have :

d(
∑

aiσi) =
∑

ai(σi0 − σi1 + σi2) = γ

where σi : ∆2 → X are 2-cycles. Hence, on the left side of the equation after collecting terms
together, γ occurs with multiplicity 1 and every other path has coefficient 0.

Now, let γij , j = 0, 1, 2 be the chosen paths γp that from x0 to σi2(0), σi0(0), σi1(1) - the three
corners of σi. We then consider the loops based at x0 given by:

βi0 = γi1σi0γ
−1
i2

βi1 = γi0σi1γ
−1
i2
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βi2 = γi0σi2γ
−1
i1

We have that in π1(X,x0).

[βi0][β−1
i1 ][βi2] = [γi1σi0σ

−1
i1 σi2γ

−1
i1

] = 0

Hence, in π1(X,x0) we have ∑
ai[βi0][β−1

i1 ][βi2] = 0

On the other hand, if we are allowed to commute terms, then we know that the coefficient of γ
will be 1 and others will cancel out, so we conclude that :

[γ] = 0 ∈ π1(X,x0)/[π1, π1].

In other words, [γ] ∈ [π1(X,x0), π1(X,x0)], as required.

Remark 5.10. Recall that a loop γ : S1 → X is homotopically trivial (i.e. [γ] = 0 ∈ π1(X)) if
and only if it extends to a map D2 → X. By refining the above discussion, one can prove that
if [γ] = 0 ∈ H1(X) if and only if γ extends to a map from (Σg\D2)→ X where Σg\D2 is genus
g surface with one boundary component.

Remark 5.11. In a similar vein, one can construct maps πk(X)→ Hk(X) for all k. Hurewicz
theorem stats that if X is path connected and πi(X) = 0 for 1 ≤ i < n for n ≥ 2, then the map
πn(X)→ Hn(X) is an isomorphism.

5.4 Homotopy invariance

It is now time to fulfill our promise and show that singular homology gives a functor:

hT → hCh

To see this, we need to show that homotopic maps f, g : X → Y induce chain homotopic maps
f∗, g∗ : C∗(X) → C∗(Y ). In other words, given a homotopy H : X × I → Y between f and g,
we need to construct a chain homotopy.

Let η0, η1 : X → X × I be the maps x→ (x, 0) and x→ (x, 1). By functoriality, it is enough to
prove that

(η0)∗, (η1)∗ : C∗(X)→ C∗(X × I)

are chain homotopic. Since this implies that f = H ◦ η0 and g = H ◦ η1 are chain homotopic
via a chain homotopy obtained by composing the chain homotopy between (η0)∗ and (η1)∗ with
H∗ : C∗(X × I)→ C∗(Y ).

Thus we need to prove:

28



Theorem 5.12. There exists a chain homotopy between (η0)∗, (η1)∗.

The most natural way of proving this lemma is via “the method of acyclic models”. This is
what we are going to do. (See Hatcher Theorem 2.10 for another proof which uses the prism
operator.)

We will need the following special case of homotopy invariance:
Lemma 5.13. Let X be a contractible topological space, then H∗(X) = H∗(pt.).

Proof. Since X is path-connected, we know that H0(X) = R. So, it suffices to show Hn(X) = 0
for n > 0. Let x0 ∈ X and H : X × I → X be a deformation retraction to x0, i.e, H(x, 0) = x
and H(x, 1) = x0 for all x ∈ X. Define the “cone operator”

K : Cn(X)→ Cn+1(X)

as follows: If σ : ∆n → X is a singular n-chain, we set:

K(σ)(t0, t1 . . . , tn+1) = H(σ(
t1

1− t0
,

t2
1− t0

, . . . ,
tn+1

1− t0
), t0)

(Note that since
∑n+1

i=0 ti = 1, one has
∑n+1

i=1
ti

1−t0 = 1. )

K(σ) can be visualized by letting σ be the restriction to the t0 = 0 face of an n + 1 simplex
K(σ) and flowing σ via the homotopy H to construct the rest of the simplex K(σ) as on the
domain one flows by a linear homotopy t0 = 0 face to its opposite vertex, namely the vertex
defined by t0 = 1.

We claim that for dK +Kd = idCn(X) for n > 0. This then implies the result that Hn(X) = 0
for n > 0. To see the claim, we simply compute:

dK(σ) =
n+1∑
i=0

(−1)iK(σ) ◦ δi = σ +
n+1∑
i=1

(−1)iK(σ) ◦ δi

= σ +
n+1∑
i=1

(−1)iK(σ ◦ δi−1) = σ −
n∑
i=0

K(σ ◦ δi) = σ −Kdσ

Proof of Theorem 5.12: We will construct by induction a chain homotopy si : Ci(X)→ Ci+1(X×
I) between (η0)∗ and (η1)∗. In other words, we will need the following equation to hold:

dsi + si−1d = (η1)i − (η0)i

for i ≥ 0.

To begin, define s0 : C0(X) → C1(X × I) to be the map given by s0(x) = x × id where
id : ∆1

∼= I → I is the identity map. Indeed, this satisfies:

ds0 = (η1)0 − (η0)0
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The idea to give a definition of si : Ci(X)→ Ci+1(X× I) is to define si(σ) to be σ× id, however
the latter is a map from ∆i × I hence does not immediately give us a (i + 1)-chain in X × I.
We will construct the required chain as the push-forward of an element pi+1 ∈ Ci+1(∆i × I).
Namely, we will define:

si(σ) = (σ × id)∗(pi+1)

where the chains pi ∈ Ci(∆i−1 × I) are required to satisfy:

dpi+1 +
i∑

j=0

(−1)j(δj × id)∗(pi) = id∆i × {1} − id∆i × {0} ∈ Ci(∆i × I)

Applying (σ × id)∗ : Ci(∆i × I)→ Ci(X × I) to this equation then gives the required equation
for verifying that si is a chain homotopy for general X.

Finally, we construct the cochains pi by induction using the contractibility of ∆i × I. Namely,
since the homology Hi(∆i× I) = 0, to construct pi+1 for i ≥ 1, all we need to see is that:

d(id∆i × {1} − id∆i × {0} −
i∑

j=0

(−1)j(δj × id)∗(pi)) = 0

We compute this as follows:

d(id∆i × {1} − id∆i × {0} −
i∑

j=0

(−1)j(δj × id)∗(pi))

=
i∑

j=0

(−1)j(δj × {1} − δj × {0} − (δj)× id)∗(dpi)

by induction, this is equal to:

=

i∑
j=0

(−1)j
i−1∑
k=0

(−1)k(δj × id)∗ ◦ (δk × id)∗(pi−1) = 0

where the last equality follows from d2 = 0.

Corollary 5.14. If f, g : X → Y are homotopic then f∗, g∗ : C∗(X)→ C∗(Y ) are chain homo-
topic. Hence, f∗ = g∗ : H∗(X)→ H∗(Y ).

Corollary 5.15. If X,Y are homotopy equivalent, then H∗(X) is isomorphic to H∗(Y ).
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5.5 Relative Homology

For A ⊂ X, we have that C∗(A) is a submodule of C∗(X) which consists of those simplices
that actually map into A. Furthermore, in fact, C∗(A) is a sub-complex of C∗(X), that is, it is
preserved by the differential on C∗(X). Therefore, one can form the quotient complex:

C∗(X,A) := C∗(X)/C∗(A)

with the induced differential

d : C∗(X)/C∗(A)→ C∗−1(X)/C∗−1(A)

given by d[x] = [dx]. As before, since d2 = 0, we can form the quotient modules

Hi(X,A;R) = ker di/Imdi+1

These are called relative homology groups.

If A = ∅ is empty, then by definition H∗(X, ∅) ∼= H∗(X). Slightly more interestingly, if x0 ∈ X is
a basepoint, the relative homology groups of (X,x0) coincide with H̃(X), that is the homology of
the augmented chain complex C̃∗(X). In this sense, we get a generalization of singular homology
to pairs (X,A).

One can form a category T 2 pairs of topological spaces, which has objects (X,A) such that
A ⊂ X and morphisms f : (X,A)→ (Y,B) are maps f : X → Y such that f(A) ⊂ B. As usual,
we can construct the homotopy category hT 2, where the objects are the same as those of T 2

but the morphisms are equivalence classes of maps f : (X,A)→ (Y,B) where the equivalence is
given by homotopy equivalence. A homotopy equivalence Ft between F0, F1 : (X,A) → (Y,B)
is by definition a homotopy Ft : X → Y such that for all values of t, Ft(A) ⊂ B.

One can easily see from the proof of Theorem 5.12 that singular chain complex gives a well-
defined functor:

hT 2 → hCh

The key point in the proof of Theorem 5.12 that allows us to extend it to the relative setting is
that from the way we constructed the chain homotopy s : C∗(X)→ C∗+1(X × I), one can infer
immediately that if A ⊂ X, then s(C∗(A)) ⊂ C∗+1(A× I).

Algebraic digression:

The relative singular chain complexes are not only a useful generalization of the absolute singu-
lar chain complexes but also they provide a powerful computation tool through exact sequences.
To understand this, we need to study the category of chain complexes a little more in depth.

Definition 5.16. An exact sequence is a chain complex with vanishing homology. An exact
sequence 0→ A→ B → C → 0 is called a short exact sequence.
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We can also consider short exact sequences of chain complexes. Namely, given chain maps
f : C∗ → D∗ and g : D∗ → E∗, we say

0→ C∗
f−→ D∗

g−→ E∗ → 0

is a short exact sequence if

0→ Cn
fn−→ Dn

gn−→ En → 0

is exact for all n.

One can depict such an exact sequence as follows

0 0

· · · Ci Ci−1 · · ·

· · · Di Di−1 · · ·

· · · Ei Ei−1 · · ·

0 0

fi

d

d

gi

fi−1

gi−1

d

where the columns are exact and the rows are chain complexes but not necessarily exact. Note
that the exactness of columns mean that fi is injective, gi is surjective and Ker(gi) = Im(fi) for
all i.

The useful algebra proposition that we will need is the following:

Proposition 5.17. A short exact sequence of chain complexes 0 → C∗
f−→ D∗

g−→ E∗ → 0
naturally gives rise to a long exact sequence of R-modules :

· · · ∂−→ Hi(C∗)
f∗−→ Hi(D∗)

g∗−→ Hi(E∗)
∂−→ Hi−1(C∗)

f∗−→ Hi−1(D∗)
g∗−→ Hi−1(E∗)

∂−→ · · ·

Proof. The key part of the proof is the construction of a well-defined connecting homomor-
phism

∂ : Hi(E∗)→ Hi−1(C∗)

and checking the resulting sequence is exact.

32



Let [z] ∈ Hi(E∗) be represented by z ∈ Ei, by surjectivity of gi : Di → Ei, there exists a chain
y ∈ Di such that gi(y) = z. Now, since z is a cycle, we have:

0 = dz = dgi(y) = gi−1dy

Therefore dy ∈ Di−1 is in the kernel of gi−1, by the exactness of short exact sequence

0→ Ci−1 → Di−1 → Ei−1 → 0

there exists an x ∈ Ci−1 such that fi−1(x) = dy. Furthermore, fi−2(dx) = d(fi−1(x)) = d(dy) =
0. But, fi−2 is injective, hence dx = 0. We then define:

∂[z] = [x]

It is a worthwhile exercise in diagram chasing to show that ∂ is well-defined, that is, it doesn’t
depend on the choices of chains x, y, and z, and that ∂ is a homomorphism such that the
resulting long exact sequence is really exact. (The reader is encouraged to go through this
exercise until he/she is convinced of the truth of the statement.)

Finally, naturality means that a commutative diagram of short exact sequences of chain com-
plexes gives rise to a commutative diagram of long exact sequences of R-modules, which is easily
checked by the naturality of the construction of the connecting homomorphism ∂.

After this algebraic digression, we return back to our study of singular chain complex. The
importance of the generalization to relative setting becomes clear from the following immediate
corollary to Proposition 5.17.

Corollary 5.18. The natural inclusion i : A→ X and the projection p : (X, ∅)→ (X,A) (here
p is just the identity map on X) maps give rise to a short exact sequence of chain complexes

0→ C∗(A)
i∗−→ C∗(X)

p∗−→ C∗(X,A)→ 0

hence a long exact sequence of R-modules:

· · · ∂−→ Hi(A)
i∗−→ Hi(X)

p∗−→ Hi(X,A)
∂−→ Hi−1(A)

i∗−→ Hi−1(X)
p∗−→ Hi−1(X,A)

∂−→ · · ·

The long exact sequence makes precise the idea that H∗(X,A) measures the difference between
H∗(X) and H∗(A). It is useful to understand the geometric meaning of the connecting homo-
morphisms ∂ : Hi(X,A) → Hi−1(A). Namely, first note that any relative cycle zi ∈ Ci(X,A)
can be represented by a chain z̃i ∈ Ci(X). The fact that zi is a cycle in Ci(X,A) implies that
dz̃i ∈ Ci−1(A). One then has, by definition, ∂([zi]) = [dz̃i] ∈ Hi−1(A).

There is an easy generalization to a triple of spaces (X,A,B) such that A ⊂ B ⊂ X. One has
an exact sequence of R-modules:

· · · ∂−→ Hi(A,B)
i∗−→ Hi(X,B)

p∗−→ Hi(X,A)
∂−→ Hi−1(A,B)→ · · ·
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This is a long exact sequence of homology groups associated to the short exact sequence of chain
complexes:

0→ C∗(A,B)→ C∗(X,B)→ C∗(X,A)→ 0

As a consequence of the excision theorem that we will see below, relative homology groups
Hk(X,A) can be identified with the absolute homology groups Hk(X ∪ CA) for k > 0, where
X ∪ CA =: Cone(i) is the mapping cone of the inclusion map i : A → X. Recall that this is
given by the pushout diagram:

A X

CA Cone(i)

where CA = (A×I)/(A×{0}) and the inclusion map from A→ CA is given by a→ (a, 1).

Moreover, for good pairs (X,A) one has a homotopy equivalence between Cone(i) and X/A.
Therefore, it is often the case that relative homology groups of (X,A) can be computed as
absolute homology groups of X/A.

For example, if A has an open neighborhood U in X such that U deformation retracts onto A,
then (X,A) is a good pair. In particular, if X is a CW complex and A is CW subcomplex, then
(X,A) is a good pair. (See Chapter 0 of Hatcher.)

Remark 5.19. More generally, i : A→ X is a cofibration, then Cone(i) is homotopy equivalent
to X/A. We will not discuss cofibrations in this course so we omit the definition.

We will now present an example computation. (Note that we will use the result that Hk(X,A) =
Hk(X/A) for k > 0 for good pairs (X,A), the proof of which will appear in the next sec-
tion).

A computation: Homology of spheres

Let X = Dn, the closed unit ball, and take A = Sn−1. Note that A can be exhibited as a
CW subcomplex of a CW complex structure on Dn so this is a good pair. We observe that
X/A = Sn. The long exact sequence associated to the pair (X,A) reads as follows:

∂−→ Hi(S
n−1)

i∗−→ Hi(D
n)

p∗−→ Hi(D
n, Sn−1)

∂−→ Hi−1(Sn−1)
i∗−→ Hi−1(Dn)

p∗−→ Hi−1(Dn, Sn−1)
∂−→ · · ·

Now we have X/A = Sn and the isomorphism Hk(X,A) = Hk(X/A) for k > 0. On the other
hand, note that Hi(D

n) = 0 for i > 0 since Dn is contractible, therefore, we conclude that:

Hi(S
n) ∼= Hi−1(Sn−1), i ≥ 2, n ≥ 1

Furthermore, the end of the long exact sequence reads:

0→ H1(Sn)→ H0(Sn−1)→ H0(Dn)→ H0(Dn, Sn−1)→ 0
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Now, since Dn is path-connected, it is easy to see that H0(Dn, Sn−1) = 0 for all n. We also
have H0(Dn) = Z and H0(Sn−1) = Z for n ≥ 2

0→ H1(Sn)→ Z→ Z→ 0, n ≥ 2

Finally, it is easy to see that the map from H0(Sn−1) → H0(Dn) is an isomorphism. So,
H1(Sn) = 0 for n ≥ 2. We also know that H1(S1) = Z because this is the abelianization of
π1(S1) = Z. Collecting all these together, one concludes:

Theorem 5.20. Hi(S
n) = 0 for i 6= 0, n, n ≥ 1 and Hn(Sn) = Z for n ≥ 1.

In the homework you’ll give a proof of the isomorphism Hk(X,A) = Hk(X/A) for k > 0 and for
good pairs (X,A) using the material from the next section.

5.6 Subdivision, Excision and Mayer-Vietoris

The main technical result we need is the following locality result:

Theorem 5.21. Let U = {Ui}i∈I be an open cover of X. Let C∗(X,U) be the subcomplex of
C∗(X) generated by simplices σ : ∆∗ → X such that the image of σ is entirely contained in some
Uσ from the cover U . (Note that d preserves C∗(X,U)). The inclusion induced chain map

ι : C∗(X,U)→ C∗(X)

is a quasi-isomorphism, i.e. , it is an isomorphism on homology.

Proof. We will need to subdivide singular chains in order to make them fit into the open sets in
U . There is a natural way to do this called the barrycentric subdivision.

For a simplex ∆q let bq = ( 1
q+1 ,

1
q+1 , . . . ,

1
q+1) be its barycenter. Let σ : ∆q−1 → ∆q be any q-1

chain (not necessarily the face map). Define the cone of σ, by Kq(σ) : ∆q → ∆q given by:

Kq(σ)(t0, t1, . . . , tq) = t0bq + (1− t0)σ(
t1

1− t0
,

t2
1− t0

, . . . ,
tq

1− t0
)

This is an instance of the cone operator that we have used in proving homotopy invariance of
homology. Note that, as before, we have dKq +Kq−1d = σ.

For every space X, we define a natural homomorphism β∗ : C∗(X)→ C∗(X) called the barycen-
tric subdivision as follows:

β0 = id, βq(ιq) = Kq(βq−1(dιq)), βq(σq) = (σq)∗(βqιq)

where ιq : ∆q → ∆q is the identity map and σq : ∆q → X is a singular chain. (By naturality, we
mean the last equality. In other words, β∗ is completely determined by its effect on the identity
maps ιq.)

It helps to draw a picture of βq(ιq) at this point for small q. We encourage the reader to do so
(or get it for free from page 120 of Hatcher).
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Lemma 5.22. β∗ : C∗(X)→ C∗(X) is a natural chain map, and there exists a chain homotopy
s∗ : C∗(X)→ C∗+1(X) between β∗ and id : C∗(X)→ C∗(X)

Proof. Assume by induction that dβq−1 = βq−2d. We compute:

d(βq(σq)) = d(σq)∗(βqιq) = (σq)∗d(βqιq) = (σq)∗dKq(βq−1(dιq))

(σq)∗(βq−1(dιq))− (σq)∗Kq−1d(βq−1d(ιq)) = (σq)∗(βq−1dιq) = βq−1dσq

Next, we show that there exists a chain homotopy s∗ : C∗(X)→ C∗+1(X) such that

dsq + sq−1d = id− βq

As β is a natural homomorphism, we should define s∗ also as a natural homomorphism. That
is, we set s∗(σq) = (σq)∗(sqιq). Therefore, we just need to construct sq(ιq) such that

dsq(ιq) + sq−1d(ιq) = ιq − βq(ιq)

To define this inductively, first set s0(ι0) : ∆1 → ∆0 to be the constant map. Note that β0 = id
and ds0(ι0) = 0 hence this starts us off. Then using the fact that ∆q is contractible, it suffices
to prove that:

d(ιq − βq(ιq)− sq−1d(ιq)) = 0

But this again holds, by induction on q. Namely, the left hand side gives:

dιq − dβq(ιq) + sq−2(d(dιq))− dιq + βq−1(dιq) = −dβq(ιq) + βq−1(dιq) = 0

Recall that a simplex ∆n ⊂ Rn+1 and we can use the distance function on Rn+1 to measure the
size or the diameter of ∆n. (Diameter of a set X by definition maximum distance of any two
points x, y ∈ X.) Note that the diameter of ∆n is 1. After subdividing ∆n the diameter of each
n-simplex in βn(ιn) is strictly less than 1. In fact, it can easily be shown that this diameter at
most n/(n+ 1), but we won’t need this precision.

Note that s∗ ◦ β∗ is a chain homotopy between β∗ and (β∗)
2 and since chain homotopy of chain

maps is an equivalence relation, we see that (β∗)
2 is also chain homotopic to identity, and so

as (β∗)
k for any k. (It is, in fact, possible to write the chain homotopy between (β∗)

k and id
explicitly, namely this is given by sk∗ := s∗((β∗)

k−1 + (β∗)
k−2 + . . .+β∗) but we do not need this

explicit form. )

Back to the proof of the Theorem 5.21, we need to show that ι∗ : H∗(X,U)→ H∗(X) is injective
and surjective.

Let us first prove surjectivity: If [z] ∈ H∗(X). Then z =
∑
aiσi for a finite set of σi. Now

by Lebesgue covering lemma since the diameter of the simplices are strictly decreasing, there
exists a ki for each σi such that (β∗)

ki(σi) ∈ U for some U in our cover U . Let k = maxiki.
Then,

(β∗)
k(z) ∈ C∗(X,U)
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On the other hand, since (β∗)
k is chain homotopic to identity, we have that

[(β∗)
k(z)] = [z] ∈ H∗(X)

This proves surjectivity.

Injectivity is proven in a similar way: If z = dw where z ∈ Cq−1(X,U) and w ∈ Cq(X). We
can find a sufficiently high k such that (β∗)

k(w) ∈ Cq(X,U). Let sk∗ : C∗(X)→ C∗+1(X) be the
chain homotopy between (β∗)

k and id. Then, we have

d(w − (β∗)
kw) = d(dskqw + skq−1dw)

Hence,
z = d((β∗)

kw + skq−1(z))

and (β∗)
kw+skq−1(z) ∈ C∗(X,U) since both β∗ and s∗ are natural, they preserve C∗(X,U). This

proves injectivity, and completes the proof.

Remark 5.23. In the statement of Theorem 5.21, we can replace the open cover U by any
collection of subspaces {Ai}i∈I of X such that {Int(Ai)}i∈I is an open cover. In other words,
the argument that we have given proves that the inclusions

C∗(X, {Int(Ai)}i∈I)→ C∗(X, {Ai}i∈I)→ C∗(X)

are quasi-isomorphisms. This mild generalization is useful to keep in mind in order to avoid
unnecessary point-set topological elaborations.

Remark 5.24. Note that Hatcher proves the finer statement that ι : C∗(X,U) → C∗(X) is a
chain homotopy equivalence, but quasi-isomorphism is sufficient for our purposes. In fact, it
can be shown abstractly that any quasi-isomorphism between free complexes (note that singular
chain complex is indeed a freely generated by singular chains) is a chain homotopy equivalence.

Corollary 5.25. (Mayer-Vietoris) If X = U ∪V , U = {U, V }, then there exists a natural short
exact sequence of chain complexes:

0→ C∗(U ∩ V )→ C∗(U)⊕ C∗(V )→ C∗(X,U)→ 0

where the two nontrivial maps are σ → (σ, σ) and (σ, τ) → σ − τ respectively. Hence, we have
a LES of R-modules:

· · · → Hi(U ∩ V )→ Hi(U)⊕Hi(V )→ Hi(X)→ Hi−1(U ∩ V )→ · · ·

The naturality means that if X = U ∪ V and Y = U ′ ∪ V ′ and f : X → Y is map with
the property that f(U) ⊂ U ′ and f(V ) ⊂ V ′ then there is an induced map of Mayer-Vietoris
sequences, where all the squares commute.

37



Mayer-Vietoris sequence can be viewed as analogous to van-Kampen theorem, since if U ∩ V
is connected, one can deduce that H1(X) = (H1(U) ⊕ H1(V ))/δ∗(H1(U ∩ V )) where δ∗ is the
map induced by the diagonal embedding σ → (σ, σ). This is the abelianized version of van-
Kampen.
Corollary 5.26. (Excision) If Z ⊂ A ⊂ X such that cl(Z) ⊂ int(A), then H∗(X,A) ∼= H∗(X−
Z,A− Z).

Proof. Intuitively, we wish to “excise” Z. If all singular simplices which are not completely
within A were disjoint from Z, then we could discard simplices touching Z and still be able to
compute H∗(X,A). The point is that X − A and Z are separated from each other. So, the
problem arises from “big simplices” but we have developed the tool of barycentric subdivision,
which allows us to replace big simplices with small simplices.

More formally, we argue as follows: Let U = X −Z, V = A, and consider the cover U = {U, V }
(cf. Remark 5.23) . Note that X − Z = U and A− Z = U ∩ V . We have X = Int(U) ∪ Int(V )
since cl(Z) ⊂ int(A), hence we have a quasi-isomorphism:

C∗(X,U)→ C∗(X)

Now, C∗(A) is a subcomplex of both sides and the quasi-isomorphism β∗ : C∗(X) → C∗(X)
of Lemma 5.22 induced by barycentric subdivision preserves C∗(A), hence tracing through the
proof one can easily conclude that we get an induced quasi-isomorphism:

C∗(X,U)/C∗(A)→ C∗(X)/C∗(A)

We now elaborate on the details of this:

Given a homology class in Hq(X,A) represent it with a cycle z =
∑
aiσi ∈ Cq(X,U). This

means that any σi that is not entirely contained in X\Z must map into A, hence would be a
chain in C∗(A) so we can drop them when we regard z as a relative cycle in C∗(X,A). This
proves that

H∗(X − Z,A− Z)→ H∗(X,A)

is surjective.

To see injectivity, let z be a relative cycle in Cq(X − Z,A − Z) such that [z] = 0 ∈ Hq(X,A).
Then, we have

z = a+ dw ∈ C∗(X)

where a ∈ Cq(A) and w ∈ Cq+1(X). Now, take k such that (β∗)
k(w) = w1 + w2 ∈ C∗(X,U)

where the image of w1 is contained in X −Z and the image of w2 is contained in A. Therefore,
we have:

(β∗)
kz − dw1 = (β∗)

ka+ dw2

The left hand side is contained in X − Z and the right hand side is contained in A, therefore,
both sides are contained in A − Z. Hence, we conclude that, the cycle (β∗)

kz is trivial in
C∗(X − Z,A− Z). This concludes the proof of injectivity.
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5.7 Degree theory and applications:

We can now pause to give some applications of the theory that we have developed so far.

One immediate application of the computation of homology groups of the spheres is that:

Theorem 5.27. If n 6= m, Rn is not homeomorphic to Rm.

Proof. If Rn and Rm were homeomorphic, their one-point compactifications Sn and Sm would
also be homeomorphic but this cannot be the case since Hn(Sn) = Z and Hn(Sm) = 0.

Let f : Sn → Sn be a continuous map. Then we have an induced map

f∗ : Hn(Sn) = Z→ Z = Hn(Sn)

This is a homomorphism of abelian groups, hence it has to a multiplication by some inte-
ger.
Definition 5.28. For f : Sn → Sn , we define deg(f) ∈ Z to be the integer such that

f∗ : Hn(Sn)→ Hn(Sn)

1→ deg(f) · 1

Note that deg(f ◦ g) = deg(f) · deg(g). Furthermore, if f : Sk → Sk is not surjective, then we
can write it as a composition Sk → Rk → Sk, and hence conclude that the deg(f) = 0.

Let us study some examples. Viewing Sn ⊂ Rn+1 as the set of vectors of length 1, we can see
that the orthogonal group G = O(n+1) acts on Sn. Any element of G consists of composition of
some rotations and some reflections. The rotations are homotopic to identity. (One connects a
rotation by an angle θ to identity by a homotopy of rotations that rotates tθ.). The composition
of two reflections is a rotation. The continuous det : G→ {1,−1} takes value −1 on a reflection.
Hence, G has two components distinguished by the determinant function.

Lemma 5.29. Let g ∈ O(n+ 1), then deg(g) = det(g) = ±1.

Proof. Since rotations are homotopic to identity by homotopy invariance, they have degree 1.
Therefore, all we need to show is that a reflection has degree −1.Let r : Sn → Sn be the reflection
given by (x0, . . . , xn) → (−x0, x1, . . . xn). Write Sn = U ∪ V where U, V are homeomorphic to
balls Dn which are preserved by the reflection such that U ∩ V deformation retracts onto an
equatorial sphere Sn−1 on which r acts by reflection. For example, take U = {xn > −ε} and
V = {xn < ε} for some small ε > 0. Applying the Mayer-Vietoris sequence and using the
naturality with respect to r, for n > 1, we get:

Hn(Sn) Hn−1(Sn−1)

Hn(Sn) Hn−1(Sn−1)

r∗

∼=

∼=

r∗
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Therefore, we reduced the calculation of degree to the case of n = 1. But, for n = 1, by the
isomorphism π1(S1) = H1(S1), we know that a loop that goes around once in counter-clockwise
can be taken to be a generator. Applying a reflection to that loop, one gets the negative of it.
Hence deg(f) = −1.

Corollary 5.30. The antipodal map a : Sn → Sn given by a(x) = −x has degree (−1)n+1

Proof. The determinant of a is (−1)n+1.

This has a very nice application to vector fields on Sn. For our purpose, we will define a vector
field on Sn to be a continuous map v : Sn → Rn+1 such that for any p ∈ Sn ⊂ Rn+1 , the point
p and v(p) are perpendicular in Rn+1.
Theorem 5.31. (Hairy ball theorem) Sn has a nowhere vanishing vector field if and only if n
is odd.

Proof. For n = 2m+ 1 odd, we just exhibit a nowhere vanishing vector field as:

v(x0, x1, . . . , x2m+1) = (−x1, x0,−x3, x2, . . . ,−x2m+1, x2m)

Now, in general, suppose v(p) 6= 0 for all p ∈ Sn. Then, consider the normalized vector

w(p) = v(p)/|v(p)|

as a map from Sn → Sn. Using this, we can construct a homotopy F : Sn × I → Sn given
by:

F (p, t) = p cos(πt) + w(p) sin(πt)

This is a homotopy between F (p, 0) = p and F (p, 1) = −p. Thus, the identity map is homotopic
to the antipodal map. But the antipodal map has degree (−1)n+1 and identity map has degree
1. So, this can only happen if n is odd. .

Remark 5.32. In the case n is odd, one can ask how many linearly independent non-vanishing
vector fields are there on Sn. This is a harder problem and was solved by Adams in 1962 using
K-theory (that you might see on a second course on algebraic topology.) The answer is that the
number of such vector fields is the same as the number of linear vector fields. The latter can be
computed via a computation in linear algebra (cf. Clifford algebras).

Local degree:

Intuitively, for a map f : Sn → Sn, deg(f) measures how many times the domain wraps around
the target. At least superficially, this seems related to the number of preimages of a generic
point in the target. On the other hand, we can observe from n = 1 case that there is a subtle
point. Namely, wrapping can be positive or negative. Correspondingly, we should count the
number of preimages of a generic point with signs. The idea of local degree makes this intuition
precise.
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Definition 5.33. Let f : Sn → Sn be a map and U ⊂ Sn be an open set (in the domain). Let
q ∈ Sn be a point such that f−1(q) ∩ U = {p1, . . . , pk} is a finite set of points in the domain.
Consider the composite map:

HnS
n → Hn(Sn, Sn − f−1

|U (q)) ∼= Hn(U,U − f−1
|U (q))

f∗−→ Hn(Sn, Sn − {q}) ∼= HnS
n

where all the unlabelled maps are the obvious ones - they either come from excision or the exact
sequences of pairs.

The composite map has the form 1 → degq(f|U ) · 1, for some integer degq(f|U ), which is called
the local degree. If U contains a unique preimage pi, then we write, the local degree as degpi(f).
This is the local degree of f at pi.

The justify the name “local degree”, we have the following proposition:

Proposition 5.34. If f−1
|U (q) ⊂ K ⊂ V ⊂ U , where K is a compact and V is a neighborhood of

K, then the local degree degq(f|U ) is also given by the composite:

Hn(Sn)→ Hn(Sn, Sn −K) ∼= Hn(V, V −K)
f∗−→ Hn(Sn, Sn − {q}) ∼= Hn(Sn)

In other words, we can replace f−1
|U (q) by any larger compact set K inside U and we can shrink

U to any neighborhood of f−1
|U (q).

Proof. The proof follows immediately from the commutativity of the following diagram:

Hn(Sn) Hn(Sn, Sn − f−1
|U (q)) Hn(U,U − f−1

|U (q)) Hn(Sn, Sn − {q}) ∼= Hn(Sn)

Hn(Sn) Hn(Sn, Sn −K) Hn(V, V −K) Hn(Sn, Sn − {q}) ∼= Hn(Sn)

= =

∼= f∗

∼= f∗

In particular, taking K = Sn = V , we conclude that degq(f|Sn) = deg(f).

The next proposition shows that local degrees add up to global degree. Hence, local degree
computations gives a way to compute the degree of a map.
Proposition 5.35. Let f : Sn → Sn and q ∈ Sn be such that f−1(q) = {p1, . . . , pk} is a finite
set of points. Choose open sets Ui for i = 1, . . . k, such that pj ∈ Ui if and only if j = i. Then,

deg(f) =

k∑
i=1

degq(f|Ui)

Proof. By the previous proposition, we may suppose that by shrinking Ui, if necessary, we may
suppose that they are disjoint. Put fi = f|Ui and U =

⊔
i Ui. The proof follows from the

commutativity (which is easy to check) of the following diagram:
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Hn(Sn) Hn(Sn, Sn − f−1(q)) Hn(U,U − f−1(q)) Hn(Sn, Sn − {q}) ∼= Hn(Sn)

⊕
Hn(Sn)

⊕
iHn(Sn, f−1

i (q))
⊕

iHn(Ui, Ui − f−1
i (q))

⊕
Hn(Sn, Sn − {q}) ∼=

⊕
Hn(Sn)

{id} {id}{(ιi)∗}

∼= f∗

∼= f∗

{(ι′i)∗}

where {id} is a map all of whose components are identity, ιi, ι
′
i are the obvious inclusions.

Remark 5.36. Assuming a little knowledge of differential topology, the degree of a map f :
Sn → Sn can be computed succinctly as follows: Let q ∈ Sn be a regular value of f (which exists
by Sard’s theorem), and f−1(q) = {p1, . . . , pk}. Then the local degree at pi is the sign of the
Jacobian, det(dfpi). Hence,

deg(f) =
∑
i

sign(det(dfpi))

5.8 Cellular homology

Cellular homology provides an alternative construction of a homology theory for CW -complexes.
As we shall see, cellular homology is much more amenable to direct computation, and it agrees
with singular homology.

Let X =
⋃
nX

n be CW-complex. Recall that Xn is obtained from Xn−1 by attaching n-cells
Dn
i for i ∈ In via the attaching maps jni : ∂Dn

i → Xn−1. Since Xn−1 is a CW -subcomplex of
Xn by a previous homework problem, we know that:

Hi(X
n, Xn−1) = Hi(X

n/Xn−1) for i > 0

Now, we exploit the fact that Xn/Xn−1 is a really simple space. Namely,

Xn/Xn−1 =
∨
i∈In

Sni

Hence, we have proved part i) of the following:
Lemma 5.37. i) Hn(Xn, Xn−1) is isomorphic to the free R-module generated by n-cells of X,
and Hi(X

n, Xn−1) = 0 for i 6= n.
ii) Hi(X

n) = 0 for i > n and the inclusion of the subcomplex Xn → X induces an isomorphism
Hi(X

n)→ Hi(X) for all i < n.

Proof. To see part ii). Consider the long exact sequence of the pair (Xn, Xn−1):

· · · → Hi+1(Xn, Xn−1)→ Hi(X
n−1)→ Hi(X

n)→ Hi(X
n, Xn−1)→ · · ·

So, for i > n, we have an isomorphism Hi(X
n) ∼= Hi(X

n−1). Inductively, we deduce that
Hi(X

n) ∼= Hi(X
0) = 0.
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On the other hand if i < n, we get Hi(X
n) ∼= Hi(X

n+1) ∼= Hi(X
n+2) ∼= . . . ∼= Hi(X

N ) for
any N > n, and taking i = n, we see that Hn(Xn) → Hn(XN ) is surjective. In particular,
this implies that Hi(X

N , Xn) = 0 for N > n and i ≤ n by another application of long exact
sequence associated with the pair (XN , Xn).

Now, to show that Hi(X
n)→ Hi(X) is an isomorphism for i < n, from the long exact sequence

of the pair (X,Xn), it suffices to show Hi(X,Xn) = 0 for i ≤ n. Since X =
⋃
nX

n, for
any cycle z, representing a class [z] ∈ Hi(X,X

n), there exists a large N > n such that [z] ∈
im[Hi(X

N , Xn) → Hi(X,X
n)] but Hi(X

N , Xn) = 0 as we have seen above for any N > n.

Now, from the long exact sequence of the pair (Xn+1, Xn) we have the boundary homomor-
phism:

∂n : Hn(Xn, Xn−1)→ Hn−1(Xn−1)

On the other hand, we have the natural quotient map:

jn−1 : Hn−1(Xn−1)→ Hn−1(Xn−1, Xn−2)

The composite gives a map:

dn = jn−1 ◦ ∂n : Hn(Xn, Xn−1)→ Hn−1(Xn−1, Xn−2)

Theorem 5.38. Let Cn = Hn(Xn, Xn−1) = R{n−cells} and dn : Cn → Cn−1 be the composite
jn−1 ◦ ∂n. Then, (C∗, d∗) is a chain complex and its homology is canonically isomorphic to
singular homology H∗(X).

Proof. dn−1 ◦ dn = jn−2 ◦ ∂n−1 ◦ jn−1 ◦ ∂n = 0 because the middle piece ∂n−1 ◦ jn−1 = 0 as these
are consecutive maps in the long exact sequence of the pair (Xn−1, Xn−2).

From the previous lemma and long exact sequence of the pairs, we have an injection

0→ Hn(Xn)
j−→ Hn(Xn, Xn−1)

and
Hn+1(Xn+1, Xn)

∂−→ Hn(Xn)→ Hn(Xn+1) ∼= Hn(X)→ 0

So, composing with the injection j one has:

Hn(X) =
im[j : Hn(Xn)→ Hn(Xn, Xn−1)]

im[j ◦ ∂ : (Hn(Xn+1, Xn)→ Hn(Xn, Xn−1)]

On the other hand, by long exact sequence of the pair (Xn, Xn−1), we have:

im[j : Hn(Xn)→ Hn(Xn, Xn−1) = ker[∂ : Hn(Xn, Xn−1)→ Hn−1(Xn−1)]

Finally, since Hn−1(Xn−1)→ Hn−1(Xn−1, Xn−2) is injective, we obtain that

Hn(X) =
ker[j ◦ ∂ : Hn(Xn, Xn−1)→ Hn−1(Xn−1, Xn−1)]

im[j ◦ ∂ : (Hn(Xn+1, Xn)→ Hn(Xn, Xn−1)]
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as required.

The next proposition gives a geometric way of computing the boundary map on cellular chain
complex via degree theory. We have the cellular boundary map

dn : R{n−cells} → R{(n−1)−cells}

We can describe this with integer valued matrix coefficients aij as follows:

dn[α] =
∑
β

aαβ[β]

where [α] is an n− cell and the index β runs through (n− 1)-cells.

On the other hand, given an n-cell Dn
α. We have its attaching map jα : Sn−1 ∼= ∂Dn → Xn−1,

and given a n− 1 cell Dn−1
β , we have a projection map πβ : Xn−1/Xn−2 → Sn−1. We can form

the composite:

cαβ : Sn−1 jα−→ Xn−1 → Xn−1/Xn−2 πβ−→ Sn−1

The following is very useful in doing computations of cellular homology :

Proposition 5.39. aαβ = deg(cαβ).

Proof. We first need to identify an explicit chain representative of the group Hn(Dn, Sn−1) ∼=
Hn−1(Sn−1) = Z ( for n > 0 ).

Exercise: After identifying the pair (Dn, Sn−1) with (∆n, ∂∆n−1) via a homeomorphism, the
identity map ιn : ∆n → ∆n gives a cycle Cn(∆n, ∂∆n). Show that this is a generator of
Hn(∆n, ∂∆n) = Z.

Now, it follows that ∂ι ∈ Cn−1(Sn−1) gives an explicit chain representative of the generator of
Hn−1(Sn−1) via our calculation of homology of spheres using the long exact sequence of the pair
(Dn, Sn−1) and excision.

It follows that the αth summand of Hn(Xn, Xn−1) is represented by the characteristic map
fnα : (∆n, ∂∆n) → (Xn, Xn−1). Hence, ∂nf

n
α is represented by the attaching map (jnα)∗[S

n−1]
where [Sn−1] ∈ Hn−1(Sn−1) = Hn−1(∂∆n) is a notation for a generator.

So, if enα is the corresponding cell, we have dn(enα) = (qn−1)∗ ◦ (jnα)∗[S
n−1] ∈ Hn−1(Xn−1, Xn−2),

where qn−1 : Xn−1 → Xn−1/Xn−2 is the collapsing map.

On the other hand, the projection from Hn−1(Xn−1, Xn−2)→ Z corresponding to an (n−1)-cell
β is induced by the map πβ : Xn−1/Xn−2 → Sn−1 .

Therefore, we get the equality for the matrix element aαβ. aαβ[Sn−1] = (πβ)∗ ◦ (qn−1)∗ ◦
(jnα)∗[S

n−1] but this is by definition the degree of the map cαβ = πβ ◦ qn−1 ◦ jnα.
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5.9 Interlude

I will be away on Monday, Oct. 20th. Ben Antieau kindly accepted to take over my duty for
the day. I expect that the lecture will consist of a selection of classical applications of singular
homology based on Chapter 2.B of Hatcher.

5.10 Euler Characteristic

Let X be a finite CW complex. Then define the Euler characteristic to be :

χ(X) =
∑
n

(−1)ncn

where cn is the number of n-cells. It is by no means obvious that χ(X) does not depend on the
cell decomposition of X. We see this as follows:

Proposition 5.40. χ(X) =
∑

n(−1)n rank Hn(X).

Proof. This will follow from a purely algebraic statement. Suppose

0→ Ck
dk−→ Ck−1

dk−1−−−→ . . .
d1−→ C0 → 0

is a chain complex consisting of finitely generated abelian groups, and let us write Hn for the
corresponding homology groups. Then, we prove that∑

n

(−1)n rank Cn =
∑
n

(−1)n rank Hn

Write Zn = ker(dn) and Bn = im(dn+1). We have the equalities:

rank Hn = rank Zn − rank Bn

rank Cn = rank Zn + rank Bn−1

The desired equality follows from these by multiplying with (−1)n and summing over n.

Example: χ(Σg) = 2− 2g, χ(CPn) = n+ 1.

The following generalizes the Euler characteristic:

Definition 5.41. Suppose X is a topological space with such that Hk(X) 6= 0 for finitely many
k and is of finite rank (for ex. a finite CW complex). Then define the Lefschetz number

L(f) =
∑
n

(−1)nTr(f∗ : Hn(X)→ Hn(X))

where Tr(f∗ : Hn(X)→ Hn(X)) is by definition the trace of the linear map

f∗ ⊗Q : Hn(X)⊗Q→ Hn(X)⊗Q

Note that L(id) = χ(X). The Lefschetz-Hopf fixed point theorem states that for X an ENR
(Euclidean Neighborhood Retract, for ex., every finite CW complex), if L(f) 6= 0, then f has a
fixed point.
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5.11 Eilenberg-Steenrod axioms

The singular homology theory that we have constructed so far gives a functor:

hT 2 → hCh

, sending a pair (X,A) to C∗(X,A). We can then take the homology an get abelian groups
{Hn(X,A)}n∈N.

For simplicity, let us restrict our discussion to CW -pairs (X,A), where X is a CW -complex and
A is a CW -subcomplex.

Definition 5.42. (Eilenberg-Steenrod) A homology theory is an sequence of functors hn, for
n ∈ Z, from the homotopy category of CW-pairs (X,A) to the category of R-modules together
with natural transformations ∂ : hn(X,A) → hn−1(A, ∅) =: hn−1(A) that satisfy the following
axioms:

• DIMENSION : h0(pt.) = R and hn(pt.) = 0 for n 6= 0.

• EXACTNESS : There is a long exact sequence of a pair (X,A) induced by inclusions
i : A→ X and p : (X, ∅)→ (X,A) :

· · · i∗−→ hn(A)→ hn(X)
p∗−→ hn(X,A)

∂−→ hn−1(A)

• EXCISION : If X = A ∪ B where A and B are CW subcomplexes, then the inclusion
(A,A ∩B)→ (X,B) induces an isomorphism:

h∗(A,A ∩B)→ h∗(X,B)

• ADDITIVITY: If (X,A) is a disjoint union of a set of pairs (Xi, Ai) then the inclusions
(Xi, Ai)→ (X,A) induce an isomorphism:⊕

i

h∗(Xi, Ai)→ h∗(X,A)

We have seen that singular homology groups H∗(X,A) satisfy all the axioms above, hence they
define a homology theory. In fact, all homology theories are isomorphic to singular homol-
ogy:
Theorem 5.43. For any homology theory hn on CW -pairs, there exists a unique natural trans-
formation h∗ → H∗, inducing an isomorphisms hn(X,A) ∼= Hn(X,A) for all n, extending a
given isomorphism from h∗(pt.)→ H∗(pt.).
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Proof. (Sketch) Given a homology theory, we can use the axioms to construct a cellular homology
theory which gives isomorphic R-modules. Namely, we set:

C∗ = hn(Xn, Xn−1)

and define the differential dn : Cn → Cn−1 as before via dn = jn−1◦∂n , where ∂n : hn(Xn, Xn−1)→
hn−1(Xn−1) and jn−1 : hn−1(Xn−1) → hn−1(Xn−1, Xn−2) are obtained from the axioms. Fur-
thermore, we can compute using the excision axiom that hn(Xn, Xn−1) = Rn−cells.

The proof of the isomorphism between Hn and the cellular homology groups used only conse-
quences of the axioms, therefore we can apply it to any homology theory hn.

Now, we have noted that the cellular chain complex for Hn and hn have the same generators,
it remains to prove that they have the same differential as well. Recall that the differential can
be computed via a degree calculation. So, we need the following:

If f : Sn → Sn is a map, then the deg(f) defined via the induced map f∗ : Hn(Sn) → Hn(Sn)
coincides with the deg(f) defined via the induced map f∗ : hn(Sn)→ hn(Sn)

This is easy for n = 0 and since we know that any map S1 → S1 is homotopic to a map eiθ → eikθ

for some k ∈ Z, it is also easy to check this for n = 1. For higher n one uses induction using the
suspension operation. Recall that the suspension is the operation:

SX = (X × I)/(X × {0} ∪X × {1})

If f : X → Y , then there is an induced map Sf : SX → SY . Now, S(Sn) = Sn+1 (sugges-
tively!). Via a Mayer-Vietoris argument (as a consequence of the axioms) as in Lemma 5.29 ,
one shows that :

hn(Sn) hn−1(Sn−1)

hn(Sn) hn−1(Sn−1)

Sf∗

∼=

∼=

f∗

This shows that the degree of g : Sn → Sn can be computed using hn or Hn for maps g of the
form g = Sf . The fact that, for n ≥ 2, any map g : Sn → Sn is homotopic to a suspension of
f : Sn−1 → Sn−1 requires a bit more homotopy theory (cf. Freudenthal suspension, Hurewicz
theorem) and this is where our sketch falls short of a proof.

Remark 5.44. A generalized (or extraordinary) homology theory is one without the DIMEN-
SION axiom. It turns out that there is a zoo of generalized homology theories. Bordism, K-
theory,. . . . You’ve got a lot to learn!

47



6 Cohomology

6.1 Cochain complexes

Recall that we have seen that singular chain complex gives a functor

hT → hCh

It was a consequence of our construction that the singular chain complex is supported in non-
negative degrees. That is, given a topological space X, we set Ci(X) = 0 for i < 0.

A general complex need not have this special property. In the other extreme, if the chain complex
is supported in nonpositive degrees, that is, if Ci = 0 for i > 0, via an identification

C−i = Ci

we usually write this as a cochain complex which is supported in nonnegative degrees. Hence, a
general cochain complex looks like:

· · · → Ci
di−→ Ci+1 di+1

−−−→ Ci+2 → · · ·

such that di+1 ◦di = 0. Note, in particular, the change in the direction of arrows. To distinguish
between chain complexes and cochain complexes one usually uses subscripts and superscripts
respectively. But, really, a cochain complex is just a chain complex supported in nonpositive
degrees, in particular, it is an object of the category hCh.

6.2 Two functors from hCh→ hCh

Given an R-module M , we have two natural functors hCh→ hCh given by prolongations of two
natural functors mod-R→ mod-R :

Ci → Ci ⊗RM
Ci → homR(Ci,M)

(Caution : We carefully defined C∗ by Ci = homR(Ci,M) for each i. The alternative, definition
C∗ = homR(C∗,M) is usually bigger, cf. the difference between direct sum and direct product
of R-modules)

In principle, composing the singular chain complex with these functors and then taking the
homology of the resulting chain complex may lead to new topological invariants.

In the first case, the differential is defined by

σ ⊗R m→ d(σ)⊗m, for σ ∈ C∗ and m ∈M

In the second case, the differential will be denoted by δ and is defined via

δ(f)(σ) = f(dσ)for σ ∈ C∗ and f ∈ homR(C∗,M)

In this second case, δ : Ci → Ci+1, hence we get a cochain complex.

48



Definition 6.1. Let X be a topological space, M be an R-module, then we define

C∗(X;M) = C∗(X)⊗RM

to be the singular chain complex with coefficients in M , and we define

C∗(X;M) = homR(C∗(X),M)

to be the singular cochain complex with coefficients in M .

As usual, one drops M from the notation, if R = Z and M = Z. The homology of the cochain
complex C∗(X;M) is called the cohomology of X (with coefficients in M), and is denoted by
H∗(X;M).

All the axiomatic properties of homology (long exact sequences of the pair, homotopy invari-
ance, excision, Mayer-Vietoris, etc.) have dual versions in cohomology, with essentially identical
proofs. Note that the connecting maps in long exact sequences go up not down in degree.

It turns out that both H∗(X;M) and H∗(X;M) are determined by the homology groups H∗(X)
(at least for reasonable rings R, such as a PID). Of course, the dual statement is also true, that
is, H∗(X;M) and H∗(X;M) are determined by H∗(X).

Statements of this form are called “universal coefficients theorems”. To state these precisely, we
need to have a digression in homological algebra.

Digression : Tor and Ext

In this digression and in the statement of universal coefficients theorem, for simplicity, we will
restrict to the case R = Z and M an abelian group. The statements can be generalized quite a
bit. At first instance, one can replace R with any hereditary ring. These rings have the property
that every submodule of a free R-module is free, which is the what we use. For example,
commutative hereditary rings are the same as PIDs.

Before going on deeper in homological algebra, it is useful to illustrate the difficulty that we are
facing via the following example. Consider the chain complex:

0→ Z 0−→ Z 2−→ Z 0−→ Z→ 0

The resulting homology groups are : H0 = Z, H1 = Z2, H2 = 0, H3 = Z. If we dualize this using
hom(·,Z), we get the cochain complex:

0←− Z 0←− Z 2←− Z 0←− Z←− 0

The resulting cohomology groups are: H0 = Z, H1 = 0, H2 = Z2, H
3 = Z. In particular, we

observe that it is NOT true that H∗ = hom(H∗,Z).

As we shall see, the main trouble comes from the fact that dualization is not an exact functor,
that is, it does not preserve short exact sequences. Similar problem occurs, with the tensor
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product functor · ⊗M . To address this issue, we will need to study derived functors of ⊗ and
hom functors. These are called Tor and Ext respectively.

Given an abelian group H, a free resolution of H is an exact sequence:

· · · → F2 → F1 → F0 → H → 0

such that Fi are free abelian groups.

The idea of a free resolution is simply to replace a possibly complicated object H of the category
of abelian groups with a sequence of simple (free) objects, namely the sequence, · · · → F2 →
F1 → F0. As it turns out, one does not need more than just 2 simple objects.
Lemma 6.2. Every abelian group has a “short” free resolution:

0→ F1 → F0 → H → 0

To see this, choose a set of generators of H, and let F0 be the free abelian group with basis in
one-to-one correspondence with these generators. Thus, we get a map f0 : F0 → H sending the
basis of F0 these generators. Now, let F1 = Ker(f0), since this is a submodule of free abelian
group, it is free. Defining f1 : F1 → F0 to be the inclusion map, we get a free resolution.

One can form a homotopy category of resolutions, whose objects are chain complexes

· · ·F2 → F1 → F0 → H → 0

which are exact, where Fi are free abelian groups and H is an arbitrary abelian group, and
whose morphisms are chain homotopy classes of chain maps.

The idea of replacing H with a free resolution can then be made precise by proving that the
functor

{· · ·F2 → F1 → F0 → H → 0} → H

is an equivalence of categories.

Proving this equivalence is not hard. It is really an exercise in repeatedly using the fact that
Fi are free. In particular, we have the following, which we leave it as an exercise. (See Hatcher
Lemma 3.1 for a proof).
Lemma 6.3. Given two free resolutions F∗ → H and F ′∗ → H. There is a chain map α : F∗ →
F ′∗ extending the identity map H → H. Moreover, α is unique up to chain homotopy.

Diagramatically, this looks like:

· · · F1 F0 H 0

· · · F ′1 F ′0 H 0

f2 f1 f0

f ′2

f ′1 f ′0

α1 α0 id
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Now, let A and B be abelian group, take a free resolution of A of the form:

0→ F1
f1−→ F0

f0−→ A→ 0

We then can apply ⊗B to this exact sequence and get a chain complex:

0→ F1 ⊗B
f1⊗id−−−→ F0 ⊗B

f0⊗id−−−→ A⊗B → 0

Lemma 6.4. This complex may not be exact only at the left (i.e. tensor product is a right exact
functor).

proof Surjectivity of f0⊗id is obvious from the surjectivity of f0. To see exactness in the middle.
Let I = Im(f1 ⊗ id). We have an induced map (F0 ⊗ B)/I → A ⊗ B. It suffices to show that
this is an isomorphism. To define an inverse, given a⊗ b let c ∈ F0 such that f0(c) = a. Define
the inverse s : A ⊗ B → (F0 ⊗ B)/I by s(a ⊗ b) = c ⊗ b. By using the exactness of the free
resolution, it is straightforward to check that this is well-defined and an isomorphism.

In view of the above lemma, we define the homology there to be Tor(A,B) = Ker(f1⊗id).

Similarly, we can apply hom(·, B) to the free resolution and get a chain complex:

0 −→ hom(A,B)
f∗0−→ hom(F0, B)

f∗1−→ hom(F1, B) −→ 0

An easy exercise shows that this complex is not exact only at the right (i.e. hom(·, B) is a left
exact functor). So, we define Ext(A,B) = Coker(f∗1 ).

Theorem 6.5. Tor(A,B) and Ext(A,B) are independent of the free resolutions.

Proof Let us just give the proof for Tor(A,B); the proof goes through along the same lines in
the dual case.

Let 0 → F1 → F0 → A → 0 and 0 → F ′1 → F ′0 → A → 0 be two different resolutions of A.
Because of the extension lemma, we have α∗ : F∗ → F ′∗ and β∗ : F ′∗ → F∗ extending the identity
maps of A. Furthermore, by uniqueness, we have that α∗ ◦ β∗ and β∗ ◦ α∗ are chain homotopic
to the identity maps.

Applying, ⊗B to get, we get induced maps α∗⊗id : F⊗B → F ′⊗B and β∗⊗id : F ′⊗B → F⊗B
which compose to maps chain homotopic to identity.

Example computations and properties: Let A,B be abelian groups.

• Tor(A,B) = Tor(B,A)

• Tor(A,B) = 0 if A or B is free.

• Tor(Zm,Zn) = Zgcd(m,n)

• Tor(⊕Ai, B) = ⊕i(Tor(Ai, B))
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• Ext(A,B) = 0 if A is free.

• Ext(Zn, B) = B/nB

All of these are straightforward exercises. Let’s do at least one.

Observe that 0 → Z ×n−−→ Z → Zn → 0 is a free resolution of Zn. Applying hom(·, B) to this
resolution gives:

0← hom(Z, B)
×n←−− hom(Z, B)← hom(Zn, B)← 0

So, Ext(Zn, B) = Coker(B
×n←−− B) = B/nB.

Theorem 6.6. (Universal coefficients for homology) Let (C∗, d∗) be a chain complex of free
abelian group and M an abelian group, then there are natural short exact sequences:

0→ Hn(C∗)⊗M → Hn(C∗;M)→ Tor(Hn−1(C∗),M)→ 0

for all n. Furthermore, there is a non-canonical splitting.

Proof: Let us write, as usual, Zn = ker(dn) and Bn = im(dn+1). Let us also write ιn : Bn → Zn
for the inclusion map.

Firstly, we can make Z∗ and B∗ subcomplexes of C∗ by the restriction of the differential d. Note
that these restrictions are just the zero map. Now, observe that because of the commutativity
of the following diagram, we get a short exact sequence of chain complexes.

0 Zn Cn Bn−1 0

0 Zn−1 Cn−1 Bn−2 0

dn

dn−1

dn dn dn−1

Now, since 0→ Zn → Cn → Bn−1 → 0 is a short exact sequence of free abelian groups, tensoring
it with M will still be exact. Indeed, tensoring with M we get a chain complex:

0→ Zn ⊗M → Cn ⊗M → Bn−1 ⊗M → 0

which is chain homotopy equivalent to the complex

0→ Bn−1 ⊗M → Bn−1 ⊗M → 0

Therefore, by tensoring with M , we get a short exact sequence of chain complexes:

0→ Z∗ ⊗M → C∗ ⊗M → B∗−1 ⊗M → 0

which is exact.
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The associated long exact sequence looks like:

· · · → Bn ⊗M → Zn ⊗M → Hn(C∗;M)→ Bn−1 ⊗M
∂−→ Zn−1 ⊗M → · · ·

The boundary homomorphism ∂ : Bn−1 ⊗M → Zn−1 ⊗M can be identified to be the inclusion
ιn−1 ⊗ id by tracing through its definition given by the Snake lemma.

So, these long exact sequences, can be broken up into short exact sequences:

0→ Coker(ιn ⊗ id)→ Hn(C∗;M)→ Ker(ιn−1 ⊗ id)→ 0

Next, let us observe that:
0→ Bn

ιn−→ Zn → Hn(C∗)→ 0

is a short exact sequence, hence a free resolution of Hn(C∗) as Zn and Bn are free abelian groups.
Tensoring with M gives a chain complex:

0→ Bn ⊗M
ιn⊗id−−−→ Zn ⊗M → Hn(C∗)⊗M → 0

Hence, we conclude that Tor(Hn(C),M) = Ker(ιn ⊗ id). Furthermore, by exactness in the
middle, we get Hn(C∗ ⊗M) = Coker(ιn ⊗ id).

With these identifications, we have the short exact sequence:

0→ Hn(C∗ ⊗M)→ Hn(C∗;M)→ Tor(Hn−1(C∗),M)→ 0

as required. It is left as an exercise to see how a splitting arises from choosing splitting of the
short exact sequences 0 → Zn → Cn → Bn−1 → 0. (I will assign a homework problem which
shows that these splittings cannot be natural).

Theorem 6.7. (Universal coefficients for cohomology) Let (C∗, d∗) be a chain complex of free
abelian group and M an abelian group, then there are natural short exact sequences:

0→ Ext(Hn−1(C∗),M)→ Hn(C∗;M)→ Hom(Hn(C∗),M)→ 0

for all n. Furthermore, there is a non-canonical splitting.

As a particular case, when R = M = Z we get short exact sequences:

0→ Hn−1(C∗)tors → Hn(C∗)→ Hom(Hn(C∗),Z)→ 0

Proof The proof of this is formally similar to the one for homology. Consider the same exact
sequence of chain complexes given by 0 → Z∗ → C∗ → B∗−1 → 0. Again, since these are free
abelian groups, applying the hom functor will preserve exactness, hence we get a short exact
sequence of abelian groups:

0→ hom(B∗−1,M)→ hom(C∗,M)→ hom(Z∗,M)→ 0
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The associated long exact sequence of abelian groups is given as:

· · · → hom(Zn−1,M)
ι∗n−1−−−→ hom(Bn−1,M)→ Hn(C∗;M)→ hom(Zn,M)

ι∗n−→ hom(Bn,M)→ . . .

where the boundary homomorphism is induced by the inclusion ιn : Bn → Zn as before. Hence,
we have the short exact sequences:

0→ Coker(ι∗n−1)→ Hn(C∗;M)→ Ker(ι∗n)→ 0

Next, we have the free resolutions:

0→ Bn
ιn−→ Zn → Hn(C∗)→ 0

Applying, hom(·,M) to this gives a chain complex:

0→ hom(Hn(C∗),M)→ hom(Zn,M)
ιn−→ hom(Bn,M)→ 0

which is not exact only at the right end where the homology is by definition the group Ext(Hn(C∗),M).
Hence, we conclude that:

Ker(ι∗n) = hom(Hn(C∗),M)

and
Coker(ι∗n) = Ext(Hn(C∗),M)

With these identifications, we have the desired result. Again, we leave as an exercise to see that
splitting of 0→ Zn → Cn → Bn−1 → 0 induce non-canonical splittings.

Remark 6.8. Note that Hn(C∗;M) → Hom(Hn(C∗),M) is just the map induced from the
Kronecker product:

Hn(C∗;M)⊗Hn(C∗)→M

given by 〈[f ], [σ]〉 → f(σ).

Remark 6.9. Now, you know how to compute H∗(X;M) and H∗(X;M) of any (finite) CW -
complex! Use cellular homology to compute homology, then use universal coefficients. Of course,
this is not the most practical way in general but I think this is a moment to pause and appreciate
the power (and perhaps, the purpose) of homological algebra.

7 Product Structures

There are many products in (co-)homology of topological spaces. The most important product
is the “cup product” and one could begin by introducing that first using an artificial looking
formula (as in Hatcher). On the other hand, the product structures naturally appear when one
studies the problem of determining H∗(X×Y ) from H∗(X) and H∗(Y ) (and the dual problem in
cohomology). Therefore, we study this problem first. (We follow mostly Chapter VI of Bredon’s
Topology and Geometry).
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7.1 The Cross product and the Künneth Theorem

Given topological spaces X and Y , we would like to relate C∗(X), C∗(Y ) and C∗(X × Y ). The
basic intuition coming from cellular homology is that the product of a p-cell in X and q-cell in
Y is a p+ q-cell in X × Y .

Definition 7.1. Given chain complexes (C∗, d) and (D∗, d) over R, define their tensor product
to be the sequence of R-modules

(C∗ ⊗R D∗)n =
⊕
i+j=n

Ci ⊗R Dj

with the differential d⊗R 1 + 1⊗R d acting by:

(d⊗ 1 + 1⊗ d)(σ ⊗ τ) = dσ ⊗ τ + (−1)|σ|σ ⊗ dτ

When it is clear, we will drop the R from ⊗R.

Koszul signs: In homological algebra, one introduces a certain sign convention called the Koszul
signs. This is a convention. It amounts to modifying signs in various formulas. You can come
up with your own convention if you like, but the Koszul convention has been widely adopted
and most people seem to believe that overall it makes the formulas appear more “logical”.

The first time this modifies the naive sign conventions is in the definition of maps between
tensor products. Namely, if f : C∗ → C ′∗ and g : D∗ → D′∗ are chain maps then one defines
f ⊗ g : C∗ ⊗D∗ → C ′∗ ⊗D′∗ by

(f ⊗ g)(σ ⊗ τ) = (−1)|g||σ|f(σ)⊗ g(τ)

A useful rule for memorizing signs is that whenever two objects a,b are permuted to which
degrees |a| and |b| are attached, then a sign (−1)|a||b| should be introduced.

In the above definition of the differential on the tensor product complex, we have adopted this
convention, which explain the sign that appears in the formula for the differential.

The following theorem is what we are aiming for:
Theorem 7.2. (Eilenberg-Zilber Theorem) There are natural chain maps:

× : C∗(X)⊗ C∗(Y )→ C∗(X × Y )

and

θ : C∗(X × Y )→ C∗(X)⊗ C∗(Y )

that are homotopy equivalences and are naturally homotopy inverses of one another. One has
that in degree 0, x× y = (x, y) and θ(x, y) = x⊗ y.
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We would like to define a bilinear chain maps:

× : C∗(X)× C∗(Y )→ C∗(X × Y )

Bilinearity then induces the maps C∗(X) ⊗ C∗(Y ) → C∗(X × Y ) which we again denote by ×
and call cross-product. It is already the obvious map in degree 0, and we would like to extend
to higher degrees. We have seen that the most natural approach to this kind of constructions is
the “method of acyclic models”.
Proposition 7.3. There exists natural bilinear maps

× : C∗(X)× C∗(Y )→ C∗(X × Y )

such that x× y = (x, y) for x ∈ C0(X) and y ∈ C0(Y ), and one has:

d(σ × τ) = dσ × τ + (−1)|σ|σ × dτ

Naturality means that if f : X → X ′ and g : Y → Y ′ are continuous maps, then

(f, g)∗(σ × τ) = f∗(σ)× g∗(τ)

Proof. By naturalily, it suffices to define ιp × ιq if ιp ∈ C∗(∆p) and ιq ∈ C∗(∆q) are the singular
chains corresponding to the identity maps of ∆p and ∆q. For general chains σ : ∆p → X and
τ : ∆q → X, we will then define:

(σ × τ) = (σ, τ)∗(ιp × ιq)

and extend it to all chains using bilinearity.

It remains to define ιp × ιq. If p = 0, then we can define ι0 × ιq = ιq. Similarly, if q = 0, we
can set ιp × ι0 = ιp. So, let us assume p > 0 and q > 0. Then, we are required to satisfy the
relation:

d(ιp × ιq) = dιp × ιq + (−1)|p|ιp × dιq ∈ Cp+q−1(∆p ×∆q)

By induction, assume that the right hand side is defined. Then, using the fact that ∆p × ∆q

is contractible and p + q − 1 > 0, to find a chain for ιp × ιq, all we need is to show that the
right-hand-side is a cycle. We can use the induction hypothesis to compute:

d(dιp × ιq) + (−1)pd(ιq × dιp) = (−1)p−1dιp × dιq + (−1)pdιq × dιp = 0

So, picking any chain whose boundary is this cycle defines a chain for ιp × ιq.

To define the inverse we need the fact that the complex C∗(∆p) ⊗ C∗(∆q) has no homology in
nonzero grading. (This is one of your homework problems.)
Proposition 7.4. There exists a natural chain map

θ : C∗(X × Y )→ C∗(X)⊗ C∗(Y )

such that θ(x⊗ y) = (x, y) for (x, y) ∈ C0(X × Y ).
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Proof Suppose θ is defined in degree less than p and such that dθ = θd in those degrees. For
p = 1, we have already defined θ in the obvious way.

Consider the case X = ∆p and Y = ∆p. Let dp : ∆p → ∆p×∆p be the diagonal map, which we
view as a chain in Cp(∆p ×∆p). To define θ(dp), let us consider the equation:

d(θ(dp)) = θ(d(dp))

By acyclicity of Cp(∆p ×∆p), all we need to check is that the right hand side is a cycle. We do
this using induction hypothesis:

d(θ(d(dp))) = θ(dd(dp)) = 0

Having defined θ(dp), let us see that the rest is determined by naturality. Indeed, let σ : ∆p →
X × Y is a p-simplex, and πX(σ) and πY (σ) be the projections to the components. Then, we
have the equality:

σ = ((πXσ)× (πY σ)) ◦ dp
Hence, naturality forces us to define:

θ(σ) = ((πXσ)⊗ (πY σ))∗(θ(dp))

It is then routine to check that this definition gives a chain map, which we omit.

Proof of Theorem 7.2 We have constructed chain maps

× : C∗(X)⊗ C∗(Y )→ C∗(X × Y )

and
θ : C∗(X × Y )→ C∗(X)⊗ C∗(Y )

such that their composition in either direction is the identity map in degree 0. One is now in
a position to repeat the argument given in Lemma 5.22 to construct natural chain homotopies.

Recall that we obtained the universal coefficients theorem for homology by studying the functor
given by · ⊗M for an R-modules M . There is a generalization of this, known as the Künneth
formula, where one instead tensors with a chain complex.

Theorem 7.5. (Algebraic Künneth theorem) If C∗ and D∗ are chain complexes of free abelian
groups, then there is a natural (split) short exact sequence:

0→
⊕
i+j=n

Hi(C∗)⊗Hj(D∗)
×−→ Hn(C∗ ⊗D∗)→

⊕
i+j=n−1

Tor(Hi(C∗), Hj(D∗)→ 0

Proof As before, consider the short exact sequence

0→ Zn
jn−→ Cn

dn−→ Bn−1 → 0
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and tensor this with D∗ to get a short exact sequence of chain complexes:

0→ Z∗ ⊗D∗
j∗⊗id−−−→ C∗ ⊗D∗

d∗⊗id−−−→ B∗−1 ⊗D∗ → 0

Get a long exact sequence that has the form:

→
⊕
i+j=n

Bi⊗Hj(D∗)→
⊕
i+j=n

Zi⊗Hj(D∗)→ Hn(C∗⊗D∗)→
⊕

i+j=n−1

Bi⊗Hj(D∗)→
⊕

i+j=n−1

Zi⊗Hj(D∗)→

,where the boundary homomorpshims can be identified with ⊕i+j=n(ιi ⊗ 1) where ιi : Bi → Zi
is the inclusion. Therefore, one has the short exact sequence:

0→
⊕
i+j=n

Coker(ιi ⊗ 1)→ Hn(C∗ ⊗D∗)→
⊕

i+j=n−1

Ker(ιi ⊗ 1)→ 0

Finally, using the short exact sequence:

0→
⊕
i+j=n

Bi ⊗Hj(D∗)→
⊕
i+j=n

Zi ⊗Hj(D∗)→
⊕
i+j=n

Hi(C∗)⊗Hj(D∗)→ 0

one obtains: ⊕
i+j=n

Coker(ιi ⊗ 1) =
⊕
i+j=n

Hi(C∗)⊗Hj(D∗)

and ⊕
i+j=n−1

Ker(ιi ⊗ 1) =
⊕

i+j=n−1

Tor(Hi(C∗), Hj(D∗))

. This gives the desired result.

An immediate corollary to this is the Goemetric Künneth theorem:
Theorem 7.6. Let X and Y be topological spaces, there is a natural exact sequence:

0→
⊕
i+j

= nHi(X)⊗Hj(Y )→ Hn(X × Y )→
⊕

i+j=n−1

Tor(Hi(X), Hj(Y ))→ 0

As an example, let us compute:

H2(RP 2 × RP 2) = (H0(RP 2)⊗H2(RP 2))⊕ (H1(RP 2)⊗H1(RP 2))⊕ (H2(RP 2)⊗H0(RP 2))

⊕ Tor(H0(RP 2), H1(RP 2))⊕ Tor(H1(RP 2), H0(RP 2)

= (Z⊗ 0)⊕ (Z2 ⊗ Z2)⊕ (0⊗ Z)⊕ Tor(Z,Z2)⊕ Tor(Z2,Z)

= Z2 ⊗ Z2

Next, we define the cross product on cohomology. Recall that we have a chain equivalence:

θ : C∗(X × Y )→ C∗(X)⊗ C∗(Y )
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Definition 7.7. Working over the ring R. Let f ∈ C∗(X) = hom(C∗(X), R) and g ∈ C∗(Y ) =
hom(C∗(Y ), R), then we have f ⊗ g : C∗(X)⊗ C∗(Y )→ R defined via the composition:

C∗(X)⊗ C∗(Y )→ R⊗R→ R

where the map on the right is the multiplication in the ring R. We define:

f × g = (f ⊗ g) ◦ θ

Koszul signs: Previously, we have defined differential on cohomology via the formula, δ(f) =
f ◦ d. The Koszul convention dictates that we modify this via the signs:

δ(f) = (−1)|f |+1f ◦ d

With that in mind, the following properties of the cross product on cohomology are routine
exercises in keeping track of the signs:

• δ(f × g) = (δf × g) + (−1)|f |f × δg
• (f × g)(σ × τ) = (−1)|g||σ|f(σ)f(τ)

In particular, from the first identity it follows that × induces a product:

Hp(X;R)⊗Hq(Y ;R)→ Hp+q(X × Y ;R)

We next study the commutativity of the cross product.

Proposition 7.8. Let T : X×Y → Y ×X be the map given by T (x, y) = (y, x). For α ∈ Hp(X)
and β ∈ Hq(Y ) we have :

α× β = (−1)pqT ∗(β × α)

Proof. Consider the following non-commutative diagram

C∗(X × Y ) C∗(X)⊗ C∗(Y )

C∗(Y ×X) C∗(Y )⊗ C∗(X)

T

θX,Y

θY,X

τ

where τ is the chain map given by τ(b⊗a) = (−1)|a||b|a⊗ b. Even though, the diagram does not
commute, it commutes up to homotopy. Meaning that, τ ◦ θY,X ◦ T ∼= θX,Y . In other words, we
have a chain homotopy sn : Cn(X × Y )→

⊕
i+j=n+1(Ci(X)⊗ Cj(Y )) satisfying :

τ ◦ θY,X ◦ T − θX,Y = snd+ dsn−1

We then compute:

T ∗([g]× [f ]) = T ∗[g × f ] = T ∗[(g ⊗ f) ◦ θY,X ] = [(g ⊗ f) ◦ θY,X ◦ T ] = (−1)|f ||g|[(f ⊗ g) ◦ τ ◦ θY,X ◦ T ]

= (−1)|f ||g|[(f ⊗ g) ◦ θX,Y ] = (−1)|f ||g|[f × g] = (−1)|f ||g|[f ]× [g]
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7.2 Cup product

The most important product is the ”cup product”. In the case, X = Y , cross-product on
cohomology provides us with a map:

× : Cp(X)⊗ Cp(Y )→ Cp+q(X ×X)

Note that the coefficients should be taken on any commutative ring R. (That is, we don’t have
× on cohomology with arbitrary module coefficients.)

Now, there is a natural canonical map called the diagonal map D : X → X × X given by
D(x) = (x, x). This gives us a map on cochains:

D∗ : C∗(X ×X)→ C∗(X)

Composing the two maps, we get a “product” on the cochain complex of a single topological
space, which is well-defined up to chain homotopy, hence is well-defined on homology.
Definition 7.9. The homomorphism

∪ : Hp(X)⊗Hq(X)→ Hp+q(X)

defined by α∪ β = D∗(α× β) is called the cup product. (The coefficients are taken to be on any
commutative ring R with unit).

The following properties of the cup product are deduced easily from the corresponding properties
of the cross product that we have established:

• The cup product equips H∗(X) with a graded ring structure.

• The ring has a unit element 1 ∈ H0(X). It is the class of the cocahin ε : C0(X) → R
taking each 0-simplex to 1.

• The product is associative.

• The product is commutative in the graded sense:

α ∪ β = (−1)|α||β|β ∪ α

• The product is natural: If f : X → Y is map then:

f∗(α ∪ β) = f∗α ∪ f∗β

We do not give detailed proofs of these properties. In effect, the only non-trivial property is
the graded commutativity and that can be proved after the graded commutativity of ×-product
which we proved.

As a result of the last property, we observe that, the cohomology as a ring is an invariant of
homotopy type.
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At the chain level, we can unwind the definition of the cup product as:

(f ∪ g)(σ) = (f ⊗ g) ◦ θ ◦D(σ)

By the naturality of this formula, if A ⊂ X and f is a cochain in C∗(X) such that it vanishes
on any singular chain contained entirely in A, then so does f ∪ g.

Therefore, if f vanishes on simplices contained in A and g vanishes on simplices contained in B,
then f ∪ g vanishes on simplices contained in A and in B but not generally in A ∪B.

On the other hand if A and B are such that Int(A)∪Int(B) = A∪B, then we had an isomorphism
via subdivision to the effect that:

C∗(A) + C∗(B)→ C∗(A ∪B)

is an isomorphism. Therefore, the complex

{f ∈ C∗(X) : f(σ) = 0 if either im(σ) ⊂ A or im(σ) ⊂ B}

can be used to compute the group H∗(X,A∪B). Therefore, in this case, we have a well-defined
cup product map on relative groups:

Hp(X,A)⊗Hq(X,B)→ Hp+q(X,A ∪B)

This holds in particular if both A and B are open, or if one of them is empty.

Remark 7.10. The cross product and cup product satisfy the following natural formula: If
α1, α2 ∈ H∗(X) and β1, β2 ∈ H∗(Y ), then :

(α1 × β1) ∪ (α2 × β2) = (−1)|α2||β1|(α1 ∪ α2)× (β1 ∪ β2)

We omit the proof of this, though it is a straightforward computation. This means that the

cross-product map : H∗(X;R)⊗H∗(Y ;R)
×−→ H∗(X × Y ) is a ring homomorphism.

From this, it is possible to recover the cross-product from cup product. Namely, let pX : X×Y →
X and pY : X × Y → Y be projections, then for α ∈ Hp(X) and β ∈ Hq(Y ), one has:

p∗X(α) ∪ p∗Y (β) = (α× 1) ∪ (1× β) = (α ∪ 1)× (1 ∪ β) = α× β ∈ Hp+q(X × Y )

An example: Computation of the ring (H∗(RP 2),∪).

We begin with some ∪-product computations in the Euclidean space. For k ≤ n, consider Rk as
a subspace of Rn, namely:

Rk = {x = (x1, . . . , xn) ∈ Rn|xi = 0 for i > k}

and dually put
R̂n−k = {x ∈ Rn|xi = 0 for i ≤ k}

Clearly, we have:

(Rn − Rk) ∪ (Rn − R̂n−k) = Rn − {0}
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Lemma 7.11. The cup product map:

∪ : Hk(Rn,Rn − R̂n−k)⊗Hn−k(Rn,Rn − Rk)→ Hn(Rn,Rn − {0})

is an isomorphism.

Proof. Consider the following diagram:

Hk(Rk,Rk − {0})⊗Hn−k(Rn−k,Rn−k − {0}) Hn(Rk × Rn−k,Rk × Rn−k − {0})

Hk((Rk,Rk − {0})× Rn−k)⊗Hn−k(Rk × (Rn−k,Rn−k − {0})) Hn(Rk × Rn−k,Rk × Rn−k − {0})

p∗ × q∗

×

=

∪

The two rows can be identified via the formula p∗α ∪ q∗β = α × β, where p : Rk × Rn−k → Rk
and q : Rk × Rn−k → Rn−k are projections.

Since the first map is an isomorphism by a relative version of Künneth theorem for cohomology,
we get that the second map is also an isomorphism.

We now give a computation of cup-product for projective spaces RPn over R = Z2. We assume
that its known to the reader that Hk(RP 2;Z2) = Z2 for 0 ≤ k ≤ n and zero otherwise. (You
have already computed H∗(RP 2;Z) additively as a homework problem, you can deduce from
that the cohomology with coefficients in R = Z2 using universal coefficients, or you can also do
the computation from scratch using cellular cochain complex.)

Here our focus is on understanding the ring structure.
Theorem 7.12. There exists an isomorphism of graded rings H∗(RPn;Z2) ∼= Z2[α]/(αn+1)
where the grading is given by |α| = 1

For fixed k ≤ n recall that the k-skeleton of RPn in its usual cell decomposition can be identified
with

Xk = RP k = {[x0;x1; . . . ;xn] : xj = 0 for all j > k}

Dually, we have another cell decomposition such that its (n− k)-skeleton is given by:

Y n−k = RPn−k = {[x0;x1; . . . ;xn] : xj = 0 for all j < k}

We have that RPn\Y n−k ∼= Xk−1 = RP k−1 via the deformation retraction :

x→ [x0 : x1 : . . . xk−1 : txk : . . . : txn], 0 ≤ t ≤ 1

Furthermore, let us identify {x ∈ RPn|xk 6= 0} with Rn and let Rk = Rn ∩ Xk and Rn−k =
Rn ∩ Y n−k.

Consider the following diagram (where the coefficients are always taken to be in Z2):
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Hk(RPn) Hk(RPn,RPn − Y n−k) Hk(Rn,Rn − R̂n−k)

Hk(RP k) Hk(RP k,RP k − (RP k ∩ Y n−k)) Hk(Rk,Rk − {0})

ρ φ ρ

ρ

ρ

where all the maps are induced by inclusion.From cellular cochain complex, we can deduce that
H i(RP k) = H i(RPn) for i ≤ k. We know that all maps ρ are isomorphisms. The map φ is also
an isomorphism because Rn−Y n−k ∼= RP k−1 ∼= RP k− (RP k ∩Y n−k). Hence, we conclude that
all the maps are isomorphisms.

There is a similar diagram where the role of Xk = RP k and Y n−k ∼= RPn−k are interchanged.
Now, consider the diagram:

Hk(RPn)×Hn−k(RPn) Hn(RPn)

Hk(RPn,RPn − Y n−k)×Hn−k(RPn,RPn −Xk) Hn(RPn,RPn − (Y n−k ∩Xk))

Hk(Rn,Rn − R̂n−k)×Hn−k(Rn,Rn − Rk) Hn(Rn,Rn − {0})

∪

∪

∪

We have seen that all the vertical maps are isomorphisms, and the last row is an isomorphism.
Hence, every row is an isomorphism. From this, we deduce that

Hk(RPn)×Hn−k(RPn)
∪−→ Hn(RPn)

are isomorphisms. The theorem follows because for i+ j ≤ n, ι∗ : H∗(RPn)→ H∗(RP i+j) is an
isomorphism of rings up to dimension (i+ j).

Similarly, one can prove that

H∗(CPn;Z) = Z[β]/(βn+1) with |β| = 2

H∗(HPn;Z) = Z[γ]/(γn+1) with |γ| = 4

Alexander-Whitney diagonal approximation:

The composition

∆ = θ ◦D∗ : C∗(X)→ C∗(X)⊗ C∗(X)

is called a diagonal approximation.
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Definition 7.13. A diagonal approximation is a natural chain map:

∆ : C∗(X)→ C∗(X)⊗ C∗(X)

such that on 0-chains ∆(x) = x⊗ x.

As we have seen, arguments similar to the one given in 5.22, implies that any two diagonal
approximations are chain homotopic.

Note that cup product was defined as f ∪ g = (f ⊗ g) ◦∆. Choosing different diagonal approxi-
mations will give the same operation on cohomology (but may differ at the chain level!).

A particularly popular diagonal approximation seems to be the Alexander-Whitney diagonal
approximation. Defined by the formula:

∆(σ) =
∑
p+q=n

σ|[t0,...,tp,0,...0] ⊗ σ|[0,...,0,tp,...,tn]

Using this, one may recover the formula that Hatcher uses to define cup product (up to
sign).
Remark 7.14. Additively, it is easy to show that the reduced cohomology groups H̃∗(X) are
“stable” in the sense that there are isomorphisms H̃p(X) = H̃p+1(ΣX), where ΣX = X ∧ S1 is
the suspension of X. On the other hand, cup products are unstable. For Y = X ∧ S1, the cup
product:

H̃p(Y )⊗ H̃q(Y )→ H̃p+q(Y )

is the zero homomorphism (see the series of exercises in Chapter 19 of May). This gives a sense
of how much more information does the cup product carry than the mere additive groups.

7.3 Cap product

Choose a diagonal approximation ∆ : C∗(X)→ C∗(X)⊗ C∗(X) such as θ ◦D∗. Define the cap
product on the chain-cochain level via:

∩ : Cp(X)⊗ Cn(X)→ Cn−p(X)

by

φ ∩ σ = (1⊗ φ)∆σ

Here are properties of the ∩-product. We omit the straightforward verification of these.

Firstly, we have for φ ∈ Cp(X) and σ ∈ Cn(X),

d(φ ∩ σ) = δφ ∩ σ + (−1)pφ ∩ dσ

This implies that, we get a bilinear product
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Hp(X)⊗Hn(X)→ Hn−p(X)

As usual, this is well-defined; it is independent of the choice of the chain level map θ.

This bilinear product satisfies the following properties. Let ε : C0(X)→ R be the augmentation
taking 0-simplices to 1, and let 〈 , 〉 : H∗(X)⊗H∗(X)→ R be the Kronecker pairing.

• ε ∩ σ = σ

• If φ ∈ Hp(X), ψ ∈ Hq(X), σ ∈ Hp+q(X) then

〈φ, ψ ∩ σ〉 = 〈φ ∪ ψ, σ〉

• (φ ∪ ψ) ∩ σ = φ ∩ (ψ ∩ σ)

• If f : X → Y , then f∗(σ) ∩ φ = f∗(σ ∩ f∗(φ))

The first and third listed property means that, H∗(X) is a graded unital H∗(X)-module. The
fourth property shows that homology, as a graded module over cohomology, is an invariant of
homotopy type. All of these properties

One can easily deduce from the properties above that cap product generalizes to relative cap
products:

∩ : Hp(X,A)⊗Hn(X,A)→ Hn−p(X)

and
∩ : Hp(X)⊗Hn(X,A)→ Hn−p(X,A)

To really appreciate the important role of ∩-product, we must now turn to manifolds.

8 Orientations and duality on manifolds

8.1 Local homology and fundamental classes

Here, we follow Chapter 20 of May’s book.

Let M be a topological n-manifold. Recall that this is a topological space which is locally
homeomorphic to Rn. To avoid pathologies, one often imposes that the topology is Hausdorff
and second countable.

Let x ∈ M be a point. Then H∗(M,M − {x}) is called the local homology group at x. Using
excision, exactness and homotopy invariance, one proves that:

Hi(M,M − x) ∼= Hi(U,U − x) ∼= H̃i−1(U − x) ∼= H̃i−1(Sn−1)

From this, one deduces:
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Lemma 8.1. If M is an n-manifold, then H∗(M,M − {x}) = R at ∗ = n and 0 otherwise.

Thus Hn(M,M − x) is a free R-module with one generator, but the generator is not specified.
An R-orientation of M will be defined to be a consistent choice of orientations as we vary the
point x. More precisely,
Definition 8.2. An R-fundamental class of M at a subspace X is an element z ∈ Hn(M,M−X)
such that for each x ∈ X, the image of z under the map

Hn(M,M −X)→ Hn(M,M − x)

induced by inclusion (M,M − X) → (M,M − x) is a generator. If X = M , then we refer to
z ∈ Hn(M) as a fundamental class of M and use the notation z = [M ]. An R-orientation
is an open cover {Ui} of M and R-fundamental classes zi of M at Ui such that if Ui ∩ Uj is
non-empty, then ui and uj are sent to the same element of Hn(M,M − Ui ∩ Uj).

We say that M is R-orientable if it admits an R-orientation.

A nice way to re-package this is to construct a covering space :

HR →M

with fibres over x, Hn(M,M − x;R).

If [M ] ∈ Hn(M) is a R-fundamental class, then we can use the restrictions: Hn(M) →
Hn(M,M − Ui) to define R-fundamental classes zi as the image of [M ]. Clearly, this gives
an R-orientation.

If M is compact, then one has a converse to this statement. To prove this, we will need the
following vanishing theorem. The proof of this is somewhat complicated. We will get back to it
in the next subsection.

Theorem 8.3. (Vanishing theorems) Let M be an n-manifold. For any abelian group G,
Hi(M ;G) = 0 if i > n and H̃n(M ;G) = 0 if M is connected and non-compact.

Let us assume this theorem and prove that R-orientations determine an R-fundamental class.

Theorem 8.4. Let K be a compact subset of an n-manifold M . Then, for any abelian group
G, one has Hi(M,M − K;G) = 0 if i > n, and an R-orientation of M determines and R-
fundamental class at K.

Proof. First suppose that K ⊂ U for some coordinate chart U ∼= Rn. Then by excision and
exactness, we have:

Hi(M,M −K;G) = Hi(U,U −K;G) = H̃i−1(U −K;G)

hence for i > n the last group vanishes by the previous vanishing theorem, as it is a non-compact
manifold of dimension n. Also notice that by excision and a deformation retraction, one has:
Hn(M,M − U) ∼= Hn(Rn,Rn − {0}). Hence, an orientation determines a fundamental class for
M at U , and hence at K, by the restriction map : Hn(M,M − U)→ Hn(M,M −K).
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For a general compact set K ⊂ M . One can divide it into finitely many compact subsets, each
of which is contained in a coordinate chart. Therefore, by induction it suffices to prove the
theorem for K ∪ L, assuming it hold for K,L and K ∩ L.

We apply a relative form of the Mayer-Vieoris to get the following long exact sequence:

· · · → Hi+1(M,M − (K ∩L))→ Hi(M,M − (K ∪L))→ Hi(M,M −K))⊕Hi(M,M −L)→ · · ·

The vanishing of Hi(M,M − (K ∪L)) for i > n follows immediately. For i = n, we have funda-
mental classes zK ∈ Hn(M,M −K) and zL ∈ Hn(M,M − L) determined by the R-orientation.
Their difference in Hn(M,M − (K ∩ L)) is 0, and the map from Hi(M,M − (K ∪ L)) →
Hi(M,M −K))⊕Hi(M,M − L) is injetive, therefore zK + zL comes from a unique class zK∪L
which is an R-fundamental class of M at K ∪ L.

Corollary 8.5. Let M be a connected compact n-manifold, n > 0. Then either M is not
orientable and Hn(M ;Z) = 0 or M is orientable and the map :

Hn(M ;Z)→ Hn(M,M − x;Z) ∼= Z

is an isomorphism for every x ∈M .

Proof. Since M − x is a connected and non-compact manifold, by the vanishing theorem, we
have Hn(M − x;G) = 0 for any abelian group G. Therefore, by the long exact sequence of the
pair, we have:

Hn(M ;G)→ Hn(M,M − x;G) = G

is injective for all coefficient groups G. Now, universal coefficients theorem for homology implies
that:

Hn(M ;Z)⊗ Zp → Hn(M,M − x;Z)⊗ Zp ∼= Zp
is injective for all positive integers p. Now, if Hn(M ;Z) 6= 0, then by testing the injectivity
property for all p, we conclude that Hn(M ;Z) ∼= Z and the map to Hn(M,M − x;Z) should be
±1.

8.2 Vanishing theorems

Theorem 8.6. Let M be an n-manifold, then for any abelian group G, Hi(M ;G) = 0 for i > n.

Proof. The case n = 0 is trivial. So, let us assume n > 0. We shall first prove the following
special case:
Lemma 8.7. Let U ⊂ Rn be an open set. Then Hi(U) = 0 for i ≥ n.

Proof. Let s =
∑
ak[σk] ∈ Hi(U) be a homology class i ≥ n. Since, the domain of σk is

compact, it follows that, there exists a compact subspace K ⊂ U such that im(σk) ⊂ K for all
k. Therefore, there exist a homology class h ∈ Hi(K) that maps to s.

By taking a cubical grid with small enough mesh, we can find a CW decomposition of Rn
consisting of small n-cubes in such a way that there is a finite subcomplex L of Rn with K ⊂
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L ⊂ U . Now, for i > 0, the connecting morpshims ∂ are isomorphisms in the commutative
diagram.

Hi+1(Rn, L) Hi+1(Rn, U)

Hi(L) Hi(U)

∂ ∂

Since (Rn, L) has no relative q-cells for q > n, using cellular homology, we see that the groups on
the left are zero for i ≥ n. Since s is the image of the h via the composition Hi(K)→ Hi(L)→
Hi(U), s = 0 as required.

Now, for an n-manifold M , let s =
∑

k akσk be an i-cycle. Let K =
⋃

im(σk). Since K is
compact, it can be covered by finitely many coordinate charts V1, . . . , VN each homeomorphic
to Rn. We apply induction to prove that if s is a cycle contained in the union of N open sets
each homeomorphic to Rn, then it is a boundary in the

⋃N
j=1 Vj , this then implies the result

for M . For N = 1, the conclusion follows from the previous lemma. Let U = V1 ∪ · · · ∪ VN−1.
Mayer-Vietoris gives an exact sequence:

Hi(U)⊕Hi(VN )→ Hi(U ∪ VN )→ Hi−1(U ∩ VN )

By induction, the left term vanishes. The previous lemma implies that the right term also van-
ishes. This implies the desired result.

Before proving the next result, we prove a lemma that we give a lemma that will be used in the
proof.
Lemma 8.8. Let V be an open in Rn. Suppose that s ∈ Hn(Rn, V ) maps to zero in Hn(Rn,Rn−
x) for all x ∈ Rn − V . Then s = 0.

Proof. We prove the equivalent statement that if s ∈ H̃n−1(V ) maps to zero in H̃n−1(Rn−x) for
all x ∈ Rn−V , then s = 0. Let K be a compact set containing the image of a chain representing
s, let U be an open set such that

K ⊂ U ⊂ U ⊂ V
Let T be a large open cube such that U ⊂ T . It suffices to show that image of s viewed as
an element in H̃n−1(T ∩ V ) is zero. We know that s maps to zero in H̃n−1(T − x) for all
x ∈ T − (T ∩ V ). Now, for any point x ∈ T − (T ∩ V ), choose a small cube that contains x an
disjoint from U . A finite set {D1, . . . Dq} of these cubes covers T − (T ∩ V ). Let Ci = Di ∩ T .
We claim that s maps to zero in H̃n−1(T − ∪pi=1Di) for all i ≤ q. This is clear for i = 0. Next,
observe that for p > 0 we have

T − ∪pi=1Di = (T − ∪p−1
i=1Di) ∩ (Rn −Dp)

Mayer-Vietoris gives

Hn((T −∪p−1
i=1Di)∪(Rn−Dp)) = 0→ H̃n−1(T −∪pi=1Di)→ H̃n−1(T −∪p−1

i=1Di)⊕H̃n−1(Rn−Dp)

where the group on the left vanishes by the previous lemma. Since s maps to zero in H̃n−1(T −
∪p−1
i=1Di)⊕ H̃n−1(Rn − ∪pi=1Di) it must then map to zero in H̃n−1(T − ∪pi=1Di).
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Theorem 8.9. Let M be a connected non-compact n-manifold, then H̃n(M ;G) = 0 for all
abelian groups G.

Proof. We have already established this for an open subset of Rn. As in the proof of the previous
theorem, we can assume that M is a finite union of coordinate charts. As part of the inductive
step, suppose U is a coordinate chart (homeomorphic to Rn), and V is an open set such that
Hn(V ) = 0. We also have Hn(U) = 0 and H̃n−1(U) = 0. Mayer-Vietoris sequence reads:

Hi(U)⊕Hi(V )→ Hi(U ∪ V )→ H̃i−1(U ∩ V )→ H̃i−1(U)⊕ H̃i−1(V )

It follows that Hn(U ∪ V ) = 0 if and only if the inclusion i : U ∩ V → V induces an injection
i∗ : H̃n−1(U ∩ V )→ H̃n−1(V ).

Let r ∈ ker(i∗). Consider the following diagram, where y ∈ U − U ∩ V :

Hn(U ∪ V ) Hn(M)

Hn(V,U ∩ V ) Hn(U ∪ V,U ∩ V ) Hn(M,M − y)

H̃n−1(U ∩ V ) Hn(U,U ∩ V ) Hn(U,U − y)

H̃n−1(V )

∂ ∂

∂

0

∼=

i∗

We explain why the vertical map Hn(M)→ Hn(M,M − y) vanishes: Let ν ∈ Hn(M), since the
image of ν lies on a compact set, we can take a point x ∈ M , which avoids that compact set.
Then, it follows that ν goes to zero, under the map, Hn(M) → Hn(M,M − x). Now, since M
is connected choose a path γ : x → y. Then we have that Hn(M,M − x) ∼= Hn(M,M − γ) ∼=
Hn(M,M − y). On the other hand, we have the factorization Hn(M) → Hn(M,M − γ) →
Hn(M,M−x), therefore, it follows thatHn(M)→ Hn(M,M−γ) sends ν to zero, thus Hn(M)→
Hn(M,M − y) sends ν to zero.

Now, since H̃n−1(U) = 0, the bottom map ∂ is surjective and there exists and s ∈ Hn(U,U ∩V )
such that ∂s = r. We claim that s maps to zero in Hn(U,U−y) for every y ∈ U−(U∩V ). By the
previous lemma, this will imply that s = 0, and thus r = 0, so that i∗ is indeed an injection. Since
i∗(r) = 0, there exists a t ∈ Hn(V, V ∩U) such that ∂(t) = r. Let s′ and t′ be images of s and t
in Hn(U ∪V,U ∩V ). Then ∂(s′− t′) = 0, hence there exists w ∈ Hn(U ∪V ) that maps to s′− t′.
Since w maps to zero in Hn(M,M − y), so does s′− t′. Since the map (V,U ∩V )→ (M,M − y)
factors through (M −y,M −y), t and thus t′ maps to zero in Hn(M,M −y). Therefore, s′ maps
to zero in Hn(M,M − y) and thus s maps to zero in Hn(U,U − y), as required.
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8.3 Poincaré Duality

The standard version of the Poincaré duality theorem is the following statement:

Theorem 8.10. Let R be a commutative ring. Let M be a compact, connected and R-oriented
manifolds, with R-fundamental class [M ] ∈ Hn(M ;R). Then, the duality map:

D : Hp(M ;R)→ Hn−p(M ;R) , c→ c ∩ [M ]

is an isomorphism for all p.

In fact, for any M -module G, one can show that cap product with [M ] ∈ Hn(M ;R) defines a
duality map Hp(M ;G) → Hn−p(M ;G), which is an isomorphism. (It is easy to see from the
definition that cap product extends to this setting.)

Before embarking on the proof of this theorem, let us discuss some immediate corollaries. In
practice, one works with the following corollary:

Corollary 8.11. Let M be an oriented, compact, connected, n-manifold. Let Tp ⊂ Hp(M) be
the torsion subgroup. The cup product pairing

α⊗ β → 〈α ∪ β, [M ]〉

induces a non-degenerate pairing:

Hp(M)/Tp ⊗Hn−p(M)/Tn−p → Z

Proof If α ∈ Tp, then some multiple mα = 0, therefore m(α ∪ β) = m(α ∪ β) = 0. But, since
Hn(M) = Z, this means that α∪ β = 0. Thus the pairing vanishes on torsion elements. On the
other hand, recall that for a compact n-manifold, H∗(M) is finitely generated, and we also have
Ext(Zr,Z) = Zr, hence by the universal coefficients theorem, we get:

Hp(M)/Tp = Hom(Hp(M),Z)

Therefore, for α ∈ Hp(M) that projects to a generator of the free abelian groupHom(Hp(M),Z),
there exists an element a ∈ Hp(M), such that 〈α, a〉 = 1. Using the Poincaré duality, we can
find a β ∈ Hn−p(M) such that β ∩ [M ] = a. Now, by the properties of cap and cup products,
we have:

〈α ∪ β, [M ]〉 = 〈α, β ∩ [M ]〉 = 1

The following can also be proved very similar to above.

Corollary 8.12. Let R be a field. Let M be an R-oriented, compact, connected, n-manifold.
The cup product pairing

α⊗ β → 〈α ∪ β, [M ]〉
induces a non-degenerate pairing:

Hp(M ;R)⊗R Hn−p(M ;R)→ R
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Note that if R is a field, then universal coefficients theorem gives an isomorphism:

Hp(M ;R) ∼= HomR(Hp(M ;R), R)

We will prove Poincaré duality via the strategy that we have been applying in the proofs of the
past few theorems. Namely, first prove it for any coordinate chart, next we prove it for any open
set in a coordinate chart, then we prove it for any union of these open sets to conclude. To do
this, we need a formulation of Poincaré duality for open sets (as stated, the duality map uses
the fact that M is compact so that one has a fundamental class).

For this purpose, we need to study cohomology with compact support.

Definition 8.13. Let M be an n-manifold, then we define:

Hq
c (M ;R) := colimHq(M,M −K;R)

where the colimit is taken with respect to the homomorphisms Hq(M,M −K)→ Hq(M,M −L)
induced by the inclusions (M,M − L) ⊂ (M,M −K) for K ⊂ L.

By definition of colimit (also known as direct limit), Hq
c (M ;R) is disjoint union of Hq(M,M −

K;R) over all compact subsets K ⊂ M , with the equivalence relation that two elements cK ∈
Hq(M,M − K;R) and cL ∈ Hq(M,M − L;R) are declared to be equivalent in Hq

c (M ;R), if
there exists some compact set C containing K ∪ L such that the image of cK and cL agrees in
Hq(M,M − C;R).

Intuitively, one should think of H∗c (M) as the cohomology built from singular cochains c for
which there is some compact subset K so that c annihilates all chains in X −K.

Of course, there are canonical maps : Hq(M,M −K;R)→ Hq
c (M) and these commute with the

maps of the direct system induced by the inclusions K ⊂ L. Indeed, Hq
c (M) is universal with

respect to this property (similar to the push-out construction that we have seen before).

In practice, one only needs to take the colimit over some compact exhaustion, that is a family
of compact set Ki whose union is M . One can easily see that this gives the same colimit by
applying the universal property. In particular, for M compact, we have Hq

c (M) = Hq(M).
Remark 8.14. In general, one should never take limits or colimits of (co)homology groups. The
right way of taking (co)limits is to first take the (co)limit of the chain complex and then take
homology. However, in the current context, this doesn’t matter.

To give an example, let us compute the groups Hp
c (Rn). As our compact exhaustion, we can

take the family of compact cubes in Rn. For any compact cube K, we have:

Hp(Rn,Rn −K) ∼= Hp(Rn,Rn − x) ∼= H̃p−1(Sn−1) ∼= H̃p(Sn)

Hence, this immediately implies that Hp
c (Rn) = 0 for p 6= n. On the other hand, Hn(Rn,Rn −

K) = R and if K ⊂ L are cubes, the induced maps are clearly isomorphisms. Therefore, we
have Hn

c (Rn) = R.
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We will need the following (semi-)functorial property. Let U be an open subspace of M , then if
K is a compact subspace of U , then we get excision isomorphisms:

Hq(U,U −K)→ Hq(M,M −K)

These commute with the maps in the direct system, therefore we get an induced map as the
composite:

Hq
c (U) = colimK⊂UH

q(U,U −K) ∼= colimK⊂UH
q(M,M −K)→ Hq

c (M)

Now for an R-oriented, connected n-manifold M and a compact subset K ⊂ M , we have a
R-fundamental class [MK ] ∈ Hn(M,M −K;R). Therefore, we can define a duality map, using
the relative cap product:

DK : Hp(M,M −K;R)→ Hn−p(M ;R) , c→ c ∩ [MK ]

If K ⊂ L, these commute with the maps in the directed system, i.e., the following diagram
commutes:

Hp(M,M −K) Hp(M,M − L)

Hn−p(M)

DK DL

Therefore, passing to colimits, we obtain a duality homomorphism:

D : Hp
c (M)→ Hn−p(M)

The following is a generalization of the previously stated Poincaré duality theorem to possibly
non-compact manifolds.
Theorem 8.15. For an R-oriented, connected, n-manifold M , the duality homomorphism D :
Hp
c (M)→ Hn−p(M) is an isomorphism.

Proof. Following May’s Chapter 20, we prove this in steps:

Step 1: The theorem is true for a coordinate chart U = Rn.

We have seen that H ∗c (Rn) ∼= Hn−∗(Rn). Indeed, for any compact cube K, we have a
fundamental class [RnK ] ∈ Hn(Rn,Rn − K) and the cap product of [RnK ] with a generator of
Hn(Rn,Rn − K) ∼= R is (up to sign) just the point class in H0(Rn) by the relation between
cup, cap and Kronecker products. Passing to colimit over compact cubes gives that D is an
isomorphism.

Step 2: If the result holds for open subspaces U , V and U ∩ V , it holds for U ∪ V .
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This step is technically the most complicated one. It involves a Mayer-Vietoris construction
for compactly supported cohomology and the naturality of the duality homomorphism. Indeed,
there exists a commutative diagram with exact rows as follows:

· · · Hp
c (U)⊕Hp

c (V ) Hp
c (U ∪ V ) Hp+1

c (U ∩ V ) · · ·

· · · Hn−p(U)⊕Hn−p(V ) Hn−p(U ∪ V ) Hn−p−1(U ∩ V ) · · ·

D D D

Once this is established the conclusion follows from the five-lemma in homological algebra (this
purely algebraic lemma states that in a commutative diagram as above, in a sequence of 5
vertical maps if all but the middle map is known to be an isomorphism then the middle map is
also an isomorphism).

To establish the above one considers the corresponding diagram before passing to colimits.
Namely, let K ⊂ U and L ⊂ V be compact sets. Call Z = U ∪V . Then we have a commutative
diagram:

Hp(Z,Z −K)⊕Hp(Z,Z − L) Hp(Z,Z − (K ∪ L)) Hp+1(Z,Z − (K ∩ V ))

Hp(U,U −K)⊕Hp(V, V − L) Hp(Z,Z − (K ∪ L)) Hp+1(U ∩ V,U ∩ V − (K ∩ L))

Hn−p(U)⊕Hn−p(V ) Hn−p(U ∪ V ) Hn−p−1(U ∩ V )

∂

∂

∂

∼= = ∼=

D ⊕D D D

The top and bottom rows are various versions of Mayer-Vietoris sequences. The middle row is
isomorphic to the top row by excision isomorphisms. The only non-trivial verification needed
is the commutativity of the squares that involve the boundary homomorphism. This involves a
diagram chase that we do not reproduce here. (See Hatcher Lemma 3.36 for details).

To obtain the previous diagram from this, one passes to colimits over K,L. Note that we have
required K ⊂ U and L ⊂ V . This set of compacts in U ∪ V is enough to compute the group
Hp
c (U ∪ V ) as they form a compact exhaustion.

Step 3: If the result holds for each Ui in a directed system U1 ⊂ U2 ⊂ . . ., then it holds for the
union U of all the Ui.

Since any compact set must be contained in one of the Ui, it follows that

colimiHn−p(Ui) = Hn−p(U)

Indeed, singular chain complex of an expanding union is the colimit of the singular chain com-
plexes, and taking homology commutes with colimits.
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On the cohomology side, again since any compact is contained in some Ui,

Hp
c (U) = colimicolimK⊂UiH

p(Ui, Ui −K) = colimiH
p
c (Ui)

Now, since D : Hp
c (Ui) → Hn−p(Ui) is an isomorphism and it commutes with the maps in-

duced by inclusion of the open set Ui in Ui+1, it follows that D : Hp
c (U) → Hn−p(U) is an

isomorphism.

Step 4: The theorem holds if U is an open subset of a coordinate neighborhood.

The result holds for an open convex subset of Rn, since then it is homeomorphic to Rn. Since
the intersection of any two convex sets is convex, by Step 2, inducting on the number of open
balls, the result holds for any finite union of open balls. Every open set U ⊂ Rn is a countable
union of convex sets (for example, open balls). Now, by ordering a countable union and letting
Ui to be the union of first i, we see that the result holds for any open set U .

Step 5: The result holds for any open subset of M .

We may as well take M = U . By Step 3, we may apply Zorn’s lemma to conclude that there is
a maximal open set V of M for which the result holds. If V is not all of M , then there exists
x ∈M − V . We may choose a coordinate chart U such that x ∈ U . By, steps 2 and 4 the result
holds for U ∪ V , contradicting the maximality of V .

Remark 8.16. There is a lucid proof of Poincaré duality for smooth manifolds which uses
Morse theory. However, there are topological manifolds which are not smoothable. In fact, there
are also more general topological spaces whose (co)homology groups satisfy Poincaré duality.
These are called Poincaré duality spaces and they are not necessarily homotopy equivalent to a
topological manifold. (You need to learn surgery theory à la Browder, Novikov, Sullivan, Wall
to understand these spaces.)

Here is an application:

Theorem 8.17. There exists a compact 3-manifold having the homology groups of S3 but which
is not simply connected.

Proof. Consider the group I of rotational symmetries of a regular icosahedron. We have I ∈
SO(3) and it is well-known that I is isomorphic to the alternating group A5 on five letters. Also,
well-known is the fact that A5 is simple.

On the other hand SO(3) is homeomorphic to RP 3. To see this, think of RP 3 as D3 with the
antipodal points on the boundary identified. Now, SO(3) is the group of rotations of R3. A
rotation is given by a choice of an axis of rotation and an angle θ with −π ≤ θ ≤ π , the angle
of rotation. So via this map, one can see SO(3) as the closed ball in R3 of radius π, with its
antipodal points identified. (Since rotation of angle π and −π are the same).

Also, observe that S3 has a natural group structure as it can be identified with SU(2) via the
description

{(a, b) ∈ C2 : |a|2 + |b|2 = 1} →
(

a b

−b a

)
∈ SU(2)
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Furthermore, the double cover of RP 3 by S3 can be identified with the double covering of topolog-
ical groups SU(2)→ SO(3). A nice way to understand this map is via Möbius transformations.
Namely, we have : (

a b

−b a

)
→
{
z → az + b

−bz + a

}
Preimage of I under this cover is a group of order 120. This is called the binary icosahedral
group 2I. I is the quotient of 2I by its center {±1}.

The binary icosahedral group 2I is a finite subgroup. The three-manifold required is the quo-
tient:

Σ = S3/2I

Since S3 is the universal cover, we have π1(Σ) = 2I. Under the double cover S3 → RP 3, the
commutator subgroup [2I, 2I] goes to [I, I] = I. The latter equality holds because I ∼= A5 is
simple. We claim that −1 is also in the commutator subgroup [2I, 2I] hence it follows that
[2I, 2I] = 2I.

Indeed, consider the Pauli matrices in SU(2).(
i 0
0 −i

)
,

(
0 −1
1 0

)
,

(
0 i
i 0

)

These correspond to the Möbius transformations z → −z, z → −1/z and z → 1/z respectively,
which are all rotations around an axis by an angle π. If our icosahedron is chosen approporiately
(as suggested by the Figure 8.3), it is invariant under these transformations.

Figure 1: Picture from Wikipedia

Therefore, these matrices are in 2I. On the other hand, we can compute that the commutator
of any two of these is −1. For example:

(
i 0
0 −i

)(
0 −1
1 0

)(
−i 0
0 i

)(
0 1
−1 0

)
=

(
−1 0
0 −1

)
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Therefore, H1(Σ) = π1/[π1, π1] = 2I/[2I, 2I] = 0. By Poincaré duality, we get H2(Σ) = 0.
Therefore, Σ has the same homology groups as S3.

Poincaré duality has version for relative version. This is an easy consequence of what we have
proved and naturality of cap product. It is useful to at least know the statement.

An n-manifold with boundary is a Hausdorff topological space M in which each point has an
open neighborhood homeomorphic to either Rn or to the half space Rn+ = {(x1, . . . , xn) ∈ Rn :
xn ≥ 0}.

Let M be compact n-manifold with boundary ∂M . Suppose M is connected and R−orientable
by which we mean that its interior M − ∂M is R-orientable. Then, one can construct an
R-fundamental class [M ] ∈ Hn(M,∂M ;R) ∼= R as before.

The relative version of Poincaré duality is the following statement:

Theorem 8.18. Let G be an R-module. Let M be a compact, connected, R-oriented n-manifold
with boundary and R-fundamental class [M ] ∈ Hn(M,∂M ;G), then capping with [M ] specifies
duality isomorphisms:

D : Hp(M,∂M)→ Hn−p(M) and D : Hp(M)→ Hn−p(M,∂M)

8.4 Signature of manifolds

Suppose M is an n = 2m (even) dimensional oriented manifold. Then, the middle dimensional
homology Hm(M) acquires a bilinear pairing. Let us take R = R. We have:

Hm(M)⊗Hm(M)→ R

given by α ⊗ β → 〈α ∪ β, [M ]〉. We have seen before that this is a non-degenerate pairing as a
consequence of Poincaré duality.

We will now study an application of cohomology and duality to the question of which n-manifolds
M can be the boundary of an (n+ 1)-manifold V .

Since α ∪ β = (−1)m
2
β ∪ α. This pairing is skew-symmetric if m is odd, and symmetric if m is

even.

A recourse to elementary linear algebra informs us that non-degenerate symmetric and skew-
symmetric bilinear forms over R can be classified as follows:
Lemma 8.19. Let V be a finite-dimensional vector space and φ : V ×V → R be a non-singular
bilinear pairing:

• If φ is skew-symmetric, then there exists a basis {p1, . . . , pr, q1 . . . , qr} such that φ(pi, qi) =
1 for 1 ≤ i ≤ r, and φ(z, w) = 0 for all other basis element (z, w). In particular, dimension
of V is even.
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• if φ is symmetric, then there exists basis elements {x1, . . . xr, y1, . . . ys} such that φ(xi, xi) =
1 for 1 ≤ i ≤ r, φ(yj , yj) = −1 for j = 1, . . . , s and φ(z, w) = 0 for all other basis elements
(z, w). The number σ = r − s is an invariant of φ called the signature of φ.

As a result, we conclude that if M is an n = 2m dimensional manifold, and m is odd, then
Hm(M) is even-dimensional. On the other hand, if m is even, then we obtain numerical invariant
σ(M) defined as the signature of the symmetric bilinear form on Hm(M). (This definition is
due to H. Weyl.) Another term used for the signature is “index”.

Now, we remark that all orientable one-, two- and three-manifolds compact manifolds are bound-
aries. This breaks down in dimension 4 :

Theorem 8.20. (Thom) If M4n = ∂V 4n+1 is connected with V compact and orientable, then
σ(M) = 0

As an easy example of a 4-manifold, with σ 6= 0, one can take CP 2#CP 2. The signature is ±2
according to how you choose to orient it.

We will deduce the theorem from the following:
Theorem 8.21. Let M = ∂B, where B is compact oriented (4k + 1)-manifold, and i : M → B
be the inclusion. Then the image i∗ : H2k(B)→ H2k(M) is a subspace of half the dimension of
H2k(M) on which the cup product pairing vanishes identically.

Proof. Let φ : H2k(M)⊗H2k(M)→ R denote the cup product pairing.

Consider the following commutative diagram of duality homomorphisms associated to long-exact
sequence of the pair (B,M).

· · · H2k(B) H2k(M) H2k+1(B,M) · · ·

· · · H2k+1(B,M) H2k(M) H2k(B) · · ·

i∗ ∂∗

∂ i∗

D D D

Now H2k(M) ∼= imi∗⊕ im∂∗ ∼= imi∗⊕ imi∗. But i∗ and i∗ are dual homomorphisms, hence imi∗

and imi∗ have the same dimension.

Furthermore, if α, β ∈ H2k(B), then ∂∗(i∗α ∪ i∗β) = ∂∗i∗(α ∪ β) = 0 by exactness. Moreover,
∂∗ : H4k(M) → H4k+1(B,M) is an injection, since it is dual to i∗ : H0(M) → H0(B). Hence,
i∗α ∪ i∗β = 0.

Proof of Thom’s theorem: Let V = H2k(M ;R) and let dim(V ) = 2s. The bilinear form has
r positive squares and 2s − r negative squares. Call the space of the positive basis V + and
the span of the negative basis V −. On the other hand, we have subspace U = i∗(H2k(B) of
dimension s, on which the bilinear form vanishes identically. Clearly U ∩ V + = {0} hence,
dim(U + V +) = s+ r. Similarly, U ∩ V − = {0} hence, dim(U + V −) = 3s− r. Since these are
both contained in V , we must have the inequalities s + r ≤ 2s and 3s − r ≤ 2s, which forces
s = r. Hence σ(M) = 0, as required.
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8.5 Thom Isomorphism

A fibre bundle π : E → B is a map which is locally trivial, that is, for all points in b ∈ B,
there exists a neighborhood U of b such that there are local trivializations, that is, homeomor-
phisms:

π−1(U) ∼= U × F

by a map taking π−1(q)→ {q} × F for all q ∈ U and F is the fibre of the bundle.

For example, a covering space is a fibration with fibre F a discrete set. A vector bundle is a fibre
bundle with F ∼= Rn and the local trivializations are linear on the fibres. Given a vector bundle
over a manifold, one can associate a (unit) disk and sphere bundles by choosing a fibrewise
metric.

A k-disk bundle is a fibre bundle with fibre F ∼= Dk, where Dk is the closed unit ball in Rk.
If π : E → B is a disk bundle, then restriction gives a k-sphere bundle π|∂E : ∂E → B. We
require these to have linear trivializations (like the ones that are obtained from a vector bundle).

Theorem 8.22. Let π : E →M be a k-disk bundle over a connected closed oriented n-manifold.
One has Hr(E, ∂E) ∼= 0 for r < k. There exist a generator τ ∈ Hk(E, ∂E) ∼= Z called the Thom
class and the map α→ π∗(α) ∪ τ from Hr(M)→ Hr+k(E) is an isomorphism for all r ≥ k.

Proof. Because the disk bundle has linear transition functions, there is a well-defined origin
on each fibre. This gives rise to a section, i : M → E which is called the zero-section. By
definition,

τ = D(i∗([M ]))

whereD : Hn(E)→ Hk(E, ∂E) is the inverse of the relative Poincaré duality isomorphism.

We will show that for α ∈ Hr(M), one has

π∗(α) ∪ τ = (DE) ◦ i∗ ◦ (DM )−1(α) (4)

where DM : Hn−r(M) → Hr(M) and DE : Hn−r(E) → Hr+k(E, ∂E) are inverses of Poincaré
duality isomorphisms. Note that DM , DE and i∗ : Hn−r(M)→ Hn−r(E) are isomorphisms, so
the result follows from this.

Let β = π∗α. To see equation 4, we just compute using properties of cup and cap products:

DE ◦ i∗ ◦ (DM )−1(α) = DE(i∗(i
∗β ∩ [M ])) = DE(β ∩ i∗([M ])

= DE(β ∩ (τ ∩ [E])) = DE((β ∪ τ) ∩ [E]) = β ∪ τ = π∗(α) ∪ τ

If E is a rank n-bundle over an n-dimensional manifold, then we write the Thom class of the
associated disk bundle is written as τ(E) ∈ Hn(E, ∂E). Its restriction e(E) = i∗(τ(E)) ∈
Hn(M) is called the Euler class. This has the property that if f : M → N is a map of
spaces π : E → N is a vector bundle, and f∗(E) → M is the pull-back vector bundle, then
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e(f∗(E)) = f∗(e(E)) ∈ Hn(M). An assignment of a vector bundle E → c(E) ∈ H∗(X) for
bundle E → X with this property is called a characteristic class; there is a beautiful book of
Milnor and Stasheff on this topic that you should read.

The relative exact sequence of the pair (E, ∂E) for a k-disk bundle over an n-manifold M gives
rise to the Gysin sequence via Thom isomorphism. Namely, we have :

· · · Hk+n(E, ∂E) Hk+n(E) Hk+n(∂E) Hk+n+1(E, ∂E) · · ·

· · · Hk(M) Hk+n(M) Hk+n(∂E) Hk+1(M) · · ·

π∗(·) ∪ τ ∼= = π∗(·) ∪ τ

The lower line is called the Gysin sqeuence. One can use this to compute cohomology of sphere
bundles. Furthermore, this gives us a way to find out information about cup products in H∗(M)
as it enters into the exact sequence.

Next, we will give a little bit of a discussion of intersection theory. The discussion here assumes
rudimentary level manifold theory (you may come back to understanding the discussion here
after next term’s manifolds class).

Let us assume that i : Nn →Mm is a smooth embedding of oriented compact smooth manifolds
(possibly with boundary in which case we assume that N meets ∂M transversely in ∂N . )

One then defines the Thom class τMN = DM (i∗[N ]) ∈ Hm−n(M), where as before DM :
Hn(M,∂M) → Hm−n(M) is the inverse of the Poincaré duality isomorphism. One can see
this as the image of the Thom class of the normal (m− n)-disk bundle of N in M .

The key property of this class is that it relates cup product to an intersection product. Namely,
if K, N are oriented submanifolds of compact oriented connected manifold M , then one de-
fines:

[K] · [N ] = D−1(D(N) ∪D(K)) = D(N) ∩K

where D : Hi(M) → Hn−i(M) is inverse to the Poincaré duality isomorphism. By definition,
one has:

[K] · [N ] = (τMK ∪ τMN ) ∩ [M ]

Hence, since Thom classes are associated to the normal bundles of the submanifolds, this inter-
section number only depends on a local computation near each submanifold. This gives us an
efficient way of computing the cup product geometrically.

Indeed, suppose that K and N are submanifolds of M that intersect transversely at a subman-
ifold K ∩ N . We assume that all of these are oriented in a consistent manner (we omit a sign
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discussion here). Then the normal bundle to K in M restricts to the normal bundle of K ∩N
in N (resp. K ∩N in K). This implies that

τNK∩N = i∗Nτ
M
K and τKK∩N = i∗Kτ

M
N

where iN : N →M and iK : K →M are inclusion maps.

From this, we deduce the following theorem:

Theorem 8.23. Suppose K,N ⊂M as before. Then we have :

τMK∩N = τMK ∪ τNK

, and equivalently,
[K] · [N ] = [K ∩N ]

Proof. After all we said above, the proof is a routine computation. Let iK∩N : K ∩N → N be
the inclusion map. We have,

[K ∩N ] = iN ∗iK∩N ∗[K ∩N ] = iN ∗(τ
N
K∩N ∩ [N ]) = iN ∗(i

∗
Nτ

M
K ∩ [N ]) = τMK ∩ iN ∗[N ]

= τMK ∩ (τNK ∩ [M ]) = (τMK ∪ τMN ) ∩ [M ] = [N ] · [M ]

This is a very interesting result: In the case of manifolds, intersections of submanifolds gives a
geometric way of understanding what ∪-product is. Of course, the next question you should ask
is which cohomology classes can be realized as Thom classes of submanifolds? Not surprisingly,
Thom has also explored this question. But,

time to take a break. . . .
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