Homework 5:

1) For all $g \ge 1$ and $n \ge 2$, compute all the higher homotopy groups $\pi_n(\Sigma_g)$ where Σ_g is the closed surface of genus g. (Bonus¹: Do the same for g = 0.)

2) Show that chain homotopy of chain maps is an equivalence relation.

3) Let X be a topological spaace. Let I = [0, 1] be the unit interval and let $I^n = [0, 1]^n$ the *n*-cube. For n = 0, this is interpreted to be a single point.

Define a *cubical chain* to be a continuous map $\sigma : I^n \to X$. Work over the ground ring $R = \mathbb{Z}$. Define the cubical chain group $C_n(X)$ to be the abelian group generated by cubical chains.

Immitating the construction of the boundary map in singular homology construct a chain complex :

$$\rightarrow C_n(X) \xrightarrow{d_n} C_{n-1}(X) \xrightarrow{d_{n-1}} \dots \xrightarrow{d_1} C_0(X) \rightarrow 0$$

In particular, verify that $d_n \circ d_{n+1} = 0$. Call the resulting homology $H_n^{\square}(X)$.

4) Show that the homology groups $H_n^{\square}(X)$ do not agree with singular homology $H_n(X)$ by computing $H_*^{\square}(pt.)$

5) Compute $H_1^{\square}(S^1)$.

6) Let $D_n(X)$ be the subgroup of $C_n(X)$ generated by degenerate cubical chains. (A cubical chain $\sigma: I^n \to X$ is called degenerate if there exists a coordinate x_i such that $\sigma(x_1, \ldots, x_n)$ is independent of x_i .)

Show that $D_*(X)$ is a sub-complex of $C_*(X)$, that is, it is preserved by d. Construct a new chain complex by letting $Q_n(X) = C_n(X)/D_n(X)$ with the induced differential. Show that for this new chain complex $H_*(pt.)$ agrees with singular homology.

¹A really big one! :)