Homework 4:

1) Recall that $p : E \to B$ is a normal (or regular or Galois) covering if $\Pi(p)(\pi_1(E,e)) \subset \pi_1(B,b)$ is a normal subgroup. Show that $p : E \to B$ is normal if and only if Aut(E/B) acts transitively on F_b , i.e. for any $e, e' \in F_b$, there exists an $f \in Aut(E/B)$ such that f(e) = e'.

2) Construct a path-connected but not normal (or regular) covering of $S^1 \vee S^1$. Identify the group of deck transformations.

- 3) Hatcher, page 79, problem 9.
- 4) Hatcher, page 80, problem 18.
- 5) Hatcher, page 81, problem 23.

6) Let C be the space of $(p,q) \in \mathbb{C}^2$ such that $4p^3 + 27q^2 \neq 0$. Note that for such (p,q) the equation $X^3 + pX + q = 0$ has 3 distinct complex roots. Let us also define the spaces :

$$B = \{(p,q,x) \in C \times \mathbb{C} : x^3 + px + q = 0\}$$

and

$$A = \{(x, y, z) \in \mathbb{C}^3 : x + y + z = 0, x \neq y, y \neq z, z \neq x\}$$

We define $\pi: A \to B$ to be the map $(x, y, z) \to (p, q, x)$ where p, q are defined by

$$X^{3} + pX + q = (X - x)(X - y)(X - z)$$

We also let $p: B \to C$ be the projection $(p, q, x) \to (p, q)$.

i) Show that $\pi,\,p$ and $p\circ\pi$ are finite sheeted covering maps.

ii) Show that A, B, C are path-connected.

iii) Let $a = (-1,0) \in C$. Show that the action of $\pi_1(C,a)$ on the fibre $p^{-1}(a)$ defines a surjective homomorphism from $\pi_1(C,a)$ to the symmetric group \mathfrak{S}_3 .

iv) Among the coverings π , p, and $p \circ \pi$, which ones are normal? What are the automorphism groups of these coverings?

v) Let K be the subspace of the sphere $S^3 = \{(z, w) \in \mathbb{C}^2 : |z|^2 + |w|^2 = 2\}$ defined by

$$K = \{ (z, w) \in \mathbb{C}^2 : z^3 = w^2 \}$$

and $b = (1, -1) \in S^3$. Show that C and $S^3 \setminus K$ have the same homotopy type. Show that K is homeomorphic to the circle $S^1 = \{(z, w) \in S^3 : w = 0\}$ but $S^3 \setminus K$ and $S^3 \setminus S^1$ are not homeomorphic.

7) (Optional) Read Chapter 4 of May's book.